Fiberedness of almost-Montesinos knots
dc.contributor.advisor | Gordon, Cameron | en |
dc.creator | Miller, Maggie | en |
dc.date.accessioned | 2015-05-13T19:47:37Z | en |
dc.date.available | 2015-05-13T19:47:37Z | en |
dc.date.issued | 2015-05 | en |
dc.identifier.uri | http://hdl.handle.net/2152/29834 | en |
dc.description.abstract | In this paper we begin to classify fiberedness of "Almost-Montesinos" knots, a generalization of Montesinos knots. We employ the method used in the classification of fiberedness of Montesinos knots due to Hirasawa and Murasugi. To achieve this classification, we find minimal-genus surfaces of "skew pretzel links" (a generalization of pretzel links) via sutured manifold decompositions, following Gabai's method for pretzel links. We end by stating three remaining cases. | en |
dc.language.iso | eng | en |
dc.subject | knot theory | en |
dc.subject | knots | en |
dc.subject | links | en |
dc.subject | fiberedness | en |
dc.subject | fibered | en |
dc.subject | Montesinos | en |
dc.subject | topology | en |
dc.subject | skew | en |
dc.subject | pretzel | en |
dc.subject | sutured | en |
dc.subject | manifold | en |
dc.subject | classification | en |
dc.title | Fiberedness of almost-Montesinos knots | en |
dc.type | Thesis | en |
dc.description.department | Mathematics | en |