• Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A three dimensional finite element method and multigrid solver for a Darcy-Stokes system and applications to vuggy porous media

    Icon
    View/Open
    sanmartingomezm63576.pdf (5.726Mb)
    Date
    2007
    Author
    San Martin Gomez, Mario
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    A vuggy porous medium is one with many small cavities called vugs, which are interconnected in complex ways forming channels that can support high flow rates. Flow in such a medium can be modeled by combining Darcy flow in the rock matrix with Stokes flow in the vugs. We develop a finite element for the numerical solution of this problem in three dimensions, which converges at the optimal rate. We design a multigrid method to solve a saddle point linear system that comes from this discretization. The intertwining of the Darcy and Stokes subdomains in a natural vuggy medium makes the resulting matrix highly oscillating, or ill-conditioned. The velocity field we are trying to compute is also very irregular and its tangential component might be discontinuous at the Darcy-Stokes interface. This imposes a difficulty in defining intergrid transfer v operators. Our definition is based on mass conservation and the analysis of the orders of magnitude of the solution. A new smoother is developed that works well for this ill-conditioned problem. We prove that coarse grid equations at all levels are well posed saddle point systems. Our algorithm has a measured convergence factor independent of the size of the system. We then use our solver to study transport and flow properties of vuggy media by simulations. We analyze the results of our transport simulations and compare them to experimental results. We study the influence of vug geometry on the macroscopic flow properties of a three dimensional vuggy porous medium.
    Department
    Mathematics
    Description
    text
    URI
    http://hdl.handle.net/2152/2929
    Collections
    • UT Electronic Theses and Dissertations
    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentThis CollectionDate IssuedAuthorsTitlesSubjectsDepartment

    My Account

    Login

    Information

    AboutContactPoliciesGetting StartedGlossaryHelpFAQs

    Statistics

    View Usage Statistics
    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin