TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Core-scale heterogeneity and dual-permeability pore structure in the Barnett Shale

    Thumbnail
    View/Open
    CRONIN-THESIS-2014.pdf (8.970Mb)
    Date
    2014-12
    Author
    Cronin, Michael Brett
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    I present a stratigraphically layered dual-permeability model composed of thin, alternating, high (~9.2 x 10⁻²⁰ m²) and low (~3.0 x 10⁻²² m²) permeability layers to explain pressure dissipation observed during pulse-decay permeability testing on an intact Barnett Shale core. I combine both layer parallel and layer perpendicular measurements to estimate layer permeability and layer porosity. Micro-computed x-ray tomography and scanning electron microscopy confirm the presence of alternating cm-scale layers of silty-claystone and organic-rich claystone. I interpret that the silty-claystone has a permeability of 9.2 x 10⁻²⁰ m² (92 NanoDarcies) and a porosity of 1.4% and that the organic-rich claystone has a permeability of 3.0 x 10⁻²² m² (0.3 NanoDarcies) and a porosity of 14%. A layered architecture explains the horizontal (k [subscript H] = 107 x 10⁻²¹ m²) to vertical (k [subscript V] = 2.3 x 10⁻²¹ m²) permeability anisotropy ratio observed in the Barnett Shale. These core-scale results suggest that spacing between high-permeability carrier beds can influence resource recovery in shales at the reservoir-scale. I also illustrate the characteristic pulse-decay behavior of core samples with multiple mutually-orthogonal fracture planes, ranging from a single planar fracture to the Warren and Root (1963) "sugar cube" model with three mutually-orthogonal fracture sets. By relating sub core-scale matrix heterogeneity to core-scale gas transport, this work is a step towards upscaling experimental permeability results to describe in-situ gas flow through matrix at the reservoir scale.
    Department
    Geological Sciences
    Description
    text
    Subject
    Permeability
    Core analysis
    URI
    http://hdl.handle.net/2152/28229
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin