TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Characterization of VTI media with PS[subscript v] AVO attributes

    Thumbnail
    View/Open
    GUSTIE-THESIS-2014.pdf (5.196Mb)
    Date
    2014-12
    Author
    Gustie, Patrick John
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    Amplitude variation with offset (AVO) signatures in vertically transverse isotropic (VTI) media vary as the degree of the anisotropy contrast between layers varies. When the contrasts in two parameters (δ and ε) that quantify the VTI elastic anisotropy are varied, the fraction of energy that reflects from a given layer interface as a mode converted shear wave (R[subscript PS]) also varies for specified angles of incidence. Mode-converted (PS[subscript V]) AVO crossplots may potentially be used to map stratigraphic layers exhibiting intrinsic VTI anisotropy with the moderate to high degrees of weak elastic anisotropy that are often attributed to shale formations. Calculated values of reflected, mode-converted energy as a function of angle of incidence (R[subscript PS](i)) are plotted to determine what mode-converted seismic data indicate about the degree of VTI weak elastic anisotropy present in a given layer. These computations involve varying the degree of weak elastic anisotropy, in this case contrasts in Thomsen’s δ and ε parameters, so that the relationship between these parameters and the amplitude variation with offset (AVO) signature can be quantified. Once this relationship is understood, it may be possible to delineate sweet spot areas of shale formations in seismic data according to how the representative points plot on an AVO crossplot. For such crossplots, the y-intercepts of the reflectivity curves in a particular parameterized space are plotted on the x-axis while the slopes of the parameterized reflectivity curves in this parameterized space are plotted on the y-axis. The grouping of points on the mode-converted AVO crossplots according to the contrast in Thomsen’s δ and ε parameters for weak elastic anisotropy is encouraging. This grouping implies that it may indeed be possible to use an AVO attribute map to characterize a given organic shale formation according to its degree of intrinsic VTI anisotropy. This attribute map would be calibrated to known production data in the locality in order to locate which areas of the mode-converted AVO crossplot predict a likely production sweet spot.
    Department
    Geological Sciences
    Description
    text
    Subject
    Multicomponent seismic
    AVO
    AVA
    Anisotropy
    VTI
    Attributes
    URI
    http://hdl.handle.net/2152/28227
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin