Extracting the dynamics of the Hodgkin-Huxley model using recurrent neural networks

Date

2007-07-06

Authors

Andoni, Sari
Saggar, Manish
Mericli, Tekin
Miillulainen, Risto

Journal Title

Journal ISSN

Volume Title

Publisher

BMC Neuroscience

Abstract

Overview: A single biological neuron is able to perform complex computations that are highly nonlinear in nature, adaptive, and superior to the perceptron model. A neuron is essentially a nonlinear dynamical system. Its state depends on the interactions among its previous states, its intrinsic properties, and the synaptic input it receives. Some of these factors are included in Hodgkin-Huxley (HH) model, which describes the ionic mechanisms involved in the generation of an action potential. This paper proposes training of an artificial neural network to identify and model the physiological properties of a biological neuron, and mimic its input-output mapping. An HH simulator was implemented to generate the training data. The proposed model was able to mimic and predict the dynamic behavior of the HH simulator under novel stimulation conditions; hence, it can be used to extract the dynamics (in vivo or in vitro) of a neuron without any prior knowledge of its physiology. Such a model can in turn be used as a tool for controlling a neuron in order to study its dynamics for further analysis.

Description

Sari Andoni is with the Institute for Neuroscience, University of Texas at Austin, Austin TX 78712, USA -- Manish Saggar, Tekin Mericli, and Riston Miikkulainen are with the Department of Computer Sciences, University of Texas at Austin, Austin TX 78712, USA

LCSH Subject Headings

Citation

Andoni, Sari, Manish Saggar, Tekin Meriçli, and Risto Miikkulainen. “Extracting the Dynamics of the Hodgkin-Huxley Model Using Recurrent Neural Networks.” BMC Neuroscience 8, no. Suppl 2 (July 6, 2007): P100. doi:10.1186/1471-2202-8-S2-P100.