Critical assessment of sequence-based protein-protein interaction prediction methods that do not require homologous protein sequences
Abstract
Background: Protein-protein interactions underlie many important biological processes. Computational prediction methods can nicely complement experimental approaches for identifying protein-protein interactions. Recently, a unique category of sequence-based prediction methods has been put forward - unique in the sense that it does not require homologous protein sequences. This enables it to be universally applicable to all protein sequences unlike many of previous sequence-based prediction methods. If effective as claimed, these new sequence-based, universally applicable prediction methods would have far-reaching utilities in many areas of biology research.
Results: Upon close survey, I realized that many of these new methods were ill-tested. In addition, newer methods were often published without performance comparison with previous ones. Thus, it is not clear how good they are and whether there are significant performance differences among them. In this study, I have implemented and thoroughly tested 4 different methods on large-scale, non-redundant data sets. It reveals several important points. First, significant performance differences are noted among different methods. Second, data sets typically used for training prediction methods appear significantly biased, limiting the general applicability of prediction methods trained with them. Third, there is still ample room for further developments. In addition, my analysis illustrates the importance of complementary performance measures coupled with right-sized data sets for meaningful benchmark tests.
Conclusions: The current study reveals the potentials and limits of the new category of sequence-based protein-protein interaction prediction methods, which in turn provides a firm ground for future endeavours in this important area of contemporary bioinformatics.
Collections
Related items
Showing items related by title, author, creator and subject.
-
Formation of nanostructures and weakening of interactions between proteins to design low viscosity dispersions at high concentrations
Borwankar, Ameya Umesh (2014-12)Monoclonal antibodies and other protein therapeutics are rapidly gaining popularity as a favored class of drugs for treatment of various types of diseases and disorders including rheumatoid arthritis, Crohn’s disease, ... -
Altering the oligomerization state of GFP-like purple protein to enhance protein taggin ability
Kuhn, Samantha (2009)Since its discovery and purification in the 1960s, Green Fluorescent Protein has quickly become an extremely useful scientific tool for analyzing protein expression and dynamics. GFP was originally discovered in a species ... -
Scoring functions for protein docking and drug design
Viswanath, Shruthi (2014-05)Predicting the structure of complexes formed by two interacting proteins is an important problem in computation structural biology. Proteins perform many of their functions by binding to other proteins. The structure of ...