TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Spatially resolved life cycle models for the environmental footprint of electricity generation

    Thumbnail
    View/Open
    PACSI-DISSERTATION-2014.pdf (3.746Mb)
    Date
    2014-08
    Author
    Pacsi, Adam Philip
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    Electricity generation has significant environmental impacts, including on regional air quality, greenhouse gas emissions, and water availability. Modeling the overall environmental impact of electricity generation requires linked simulations of power generation, air pollution physics and chemistry, greenhouse gas emissions, and water use. Tools for performing these analyses in an integrated manner are just beginning to emerge. This work expands on the development of linked models for electricity generation, air quality, and water use that have provided single-day snapshots of these environmental impacts. The original model used a non-linear optimization model for power generation, a regional photochemical model for air quality impacts, and self-contained modules for greenhouse gas emissions and water usage at power plants in Texas. The new model includes life cycle scenarios for the power sector (including changes in both the fuel production and electricity generation stages) and expands the temporal scale of the modeling framework to include impacts on monthly, seasonal, and annual time scales instead of on single days. In addition, the air quality framework has been expanded to include atmospheric particulate matter as an air quality impact. This modeling framework will be used to assess the air quality impacts of new natural gas developments in the Barnett and Eagle Ford shale regions in Texas, the consumptive water impact of new natural gas development in Texas, the impact of seasonal versus ozone forecast-based pricing for power plant NOx emissions in the state of Texas, and the potential cost and air quality impacts of drought-based operation of the power grid in Texas.
    Department
    Chemical Engineering
    Description
    text
    Subject
    Natural gas
    ERCOT
    Water use
    Drought
    URI
    http://hdl.handle.net/2152/26874
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin