Show simple item record

dc.contributor.advisorAggarwal, J.K. (Jagdishkumar Keshoram), 1936-
dc.creatorTamersoy, Birgien
dc.date.accessioned2014-09-18T18:25:42Zen
dc.date.issued2014-08en
dc.date.submittedAugust 2014en
dc.identifier.urihttp://hdl.handle.net/2152/25995en
dc.descriptiontexten
dc.description.abstractAccurate and efficient localization of facial features is a crucial first step in many face-related computer vision tasks. Some of these tasks include, but not limited to: identity recognition, expression recognition, and head-pose estimation. Most effort in the field has been exerted towards developing better ways of modeling prior appearance knowledge and image observations. Modeling prior shape knowledge, on the other hand, has not been explored as much. In this dissertation I primarily focus on the limitations of the existing methods in terms of modeling the prior shape knowledge. I first introduce a new pose-constrained shape model. I describe my shape model as being "highly flexible yet sufficiently strict". Existing pose-constrained shape models are either too strict, and have questionable generalization power, or they are too loose, and have questionable localization accuracies. My model tries to find a good middle-ground by learning which shape constraints are more "informative" and should be kept, and which ones are not-so-important and may be omitted. I build my pose-constrained facial feature localization approach on this new shape model using a probabilistic graphical model framework. Within this framework, observed and unobserved variables are defined as the local image observations, and the feature locations, respectively. Feature localization, or "probabilistic inference", is then achieved by nonparametric belief propagation. I show that this approach outperforms other popular pose-constrained methods through qualitative and quantitative experiments. Next, I expand my pose-constrained localization approach to unconstrained setting using a multi-model strategy. While doing so, once again I identify and address the two key limitations of existing multi-model methods: 1) semantically and manually defining the models or "guiding" their generation, and 2) not having efficient and effective model selection strategies. First, I introduce an approach based on unsupervised clustering where the models are automatically learned from training data. Then, I complement this approach with an efficient and effective model selection strategy, which is based on a multi-class naive Bayesian classifier. This way, my method can have many more models, each with a higher level of expressive power, and consequently, provides a more effective partitioning of the face image space. This approach is validated through extensive experiments and comparisons with state-of-the-art methods on state-of-the-art datasets. In the last part of this dissertation I discuss a particular application of the previously introduced techniques; facial feature localization in unconstrained videos. I improve the frame-by-frame localization results, by estimating the actual head-movement from a sequence of noisy head-pose estimates, and then using this information for detecting and fixing the localization failures.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.subjectFacial feature localizationen
dc.subjectProbabilistic graphical modelsen
dc.subjectBelief propagationen
dc.subjectNonparametric belief propagationen
dc.titleFacial feature localization using highly flexible yet sufficiently strict shape modelsen
dc.typeThesisen
dc.date.updated2014-09-18T18:25:42Zen
dc.description.departmentElectrical and Computer Engineeringen
thesis.degree.departmentElectrical and Computer Engineeringen
thesis.degree.disciplineElectrical and Computer Engineeringen
thesis.degree.grantorThe University of Texas at Austinen
thesis.degree.levelDoctoralen
thesis.degree.nameDoctor of Philosophyen


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record