• Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    First principles modeling of arsenic and fluorine behavior in crystalline silicon during ultrashallow junction formation

    Icon
    View/Open
    harrisond22935.pdf (2.643Mb)
    Date
    2006
    Author
    Harrison, Scott Anthony
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    The 2005 International Technology Roadmap for Semiconductors predicts ultrashallow junctions (USJs) less than 7 nm deep with unprecedented dopant activation levels will be required for silicon transistors to be manufactured in 2010. To meet these requirements, it is necessary to have a better understanding of the dopant transient enhanced diffusion (TED) and clustering behaviors that undermine the achievement of these manufacturing specifications. Arsenic (As) is a commonly used n-type dopant in USJ formation and fluorine (F) is an impurity commonly co-implanted with dopants to reduce dopant diffusion and clustering during USJ formation. In this dissertation, density functional theory within the generalized gradient approximation is used to understand the behavior of As and F in crystalline silicon during USJ formation. In the first part of this dissertation, the influence of silicon interstitials on As behavior during thermal annealing that follows dopant implantation is investigated. As a result of dopant implantation, a net excess of silicon interstitial defects exist in the silicon. First, it is shown that silicon interstitials can easily annihilate existing Asvacancy complexes in silicon with negligible recombination energy barriers. Second, experimentally observed As TED mediated by interstitials is explained by the formation of a highly mobile As-silicon interstitial pair that can exist in positive, neutral, and negative charge states. Finally, it is shown that large As-silicon interstitial complexes may form when excess interstitials are present and provide a kinetic route to As clustering that leads to As deactivation. In the second part of this dissertation, the interaction of F impurities with silicon interstitials and B dopants is investigated. First, the formation and diffusion of a highly mobile fluorine-silicon interstitial pair which has been suggested by experiment is detailed. Second, an immobile B-Sii-F structure is identified in which B has a deactivated configuration. This structure may play a role in deactivating and immobilizing B when implanted B and F profiles coincide. This research provides fundamental insight into the behavior of As dopants and F impurities during USJ formation. As the future of silicon-based devices relies on the ability to perform precise doping, these findings should be of great importance to device manufacturers.
    Department
    Chemical Engineering
    Description
    text
    URI
    http://hdl.handle.net/2152/2520
    Collections
    • UT Electronic Theses and Dissertations
    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentThis CollectionDate IssuedAuthorsTitlesSubjectsDepartment

    My Account

    Login

    Information

    AboutContactPoliciesGetting StartedGlossaryHelpFAQs

    Statistics

    View Usage Statistics
    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin