Genetic basis for ichthyotoxicity and osmoregulation in the euryhaline haptophyte, Prymnesium parvum N. Carter

Date

2014-05

Authors

Talarski, Aimee Elizabeth

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

There is limited information currently available regarding the underlying physiological responses and molecular mechanisms of osmoregulation, acetate metabolism [in relation to the synthesis of glycerolipids, polyunsaturated fatty acids (PUFA), and ichthyotoxins], and transport in Prymnesium parvum N. Carter, a microalga that causes devastating harmful algal blooms (HAB) worldwide. This dissertation examines gene expression under environmental conditions that are associated with HAB formation, including phosphate limitation and low salinity, using microarrays and RNA sequencing (RNA-Seq). A comparative fatty acid methyl ester (FAME) analysis at 30 vs. 5 practical salinity units (psu) was performed to gain additional insight into acetate metabolism. The RNA-Seq analysis included a de novo assembly of the P. parvum transcriptome, generating 47,289 transcripts, of which 35.4% were identifiable. This permitted the evaluation of the expression of many more genes compared with the microarray analysis, which examined ~3,500 genes. Relevant candidate genes identified included those whose products are involved in osmolyte production, salinity stress, and ion transport. With respect to the putative synthesis of polyketide ichthyotoxins, 32 different polyketide synthase (PKS) transcripts were identified in the transcriptome assembly, none of which were differentially expressed. Hemolysin and monogalactosyldiacylglycerol synthase were downregulated at 30 vs. 5 psu, suggesting the increased presence of additional ichthyotoxins at the lower salinity. Evidence for several PUFA synthesis pathways was also revealed. Fatty acid compositions were largely similar at the two salinities, containing relatively prominent quantities of the PUFA stearidonic acid, but compositions varied among strains. The transcription of genes whose products are associated with vesicular transport was elevated, and higher levels of extracellular prymnesins were observed in HAB-forming conditions. Thus, with regard to acetate metabolism, I have revealed evidence for the post-transcriptional regulation of the production of prymnesins and the contributory effects of hemolysin, monogalactosyldiacylglycerol, and PUFA towards ichthyotoxicity. Further, I propose that toxin transport is triggered in HAB-forming conditions, in which the toxins are actively being excreted. Collectively, these data shed light on the transcriptional responses that occur following alterations in phosphate availability and salinity, including those associated with the synthesis and delivery of a number of potential ichthyotoxins from P. parvum.

Department

Description

text

LCSH Subject Headings

Citation