Show simple item record

dc.creatorBhat, Chandra R.en
dc.date.accessioned2014-04-11T19:51:05Zen
dc.date.available2014-04-11T19:51:05Zen
dc.date.issued2000en
dc.identifier.citationBhat, C.R. (2000), "A Multi-Level Cross-Classified Model for Discrete Response Variables", Transportation Research Part B, Vol. 34, No. 7, pp. 567-582.en
dc.identifier.urihttp://hdl.handle.net/2152/23976en
dc.description.abstractIn many spatial analysis contexts, the variable of interest is discrete and there is spatial clustering of observations. This paper formulates a model that accommodates clustering along more than one dimension in the context of a discrete response variable. For example, in a travel mode choice context, individuals are clustered by both the home zone in which they live as well as by their work locations. The model formulation takes the form of a mixed logit structure and is estimated by maximum likelihood using a combination of Gaussian quadrature and quasi- Monte Carlo simulation techniques. An application to travel mode choice suggests that ignoring the spatial context in which individuals make mode choice decisions can lead to an inferior data fit as well as provide inconsistent evaluations of transportation policy measures.en
dc.language.isoengen
dc.publisherElsevieren
dc.subjectmixed logit modelen
dc.subjectmulti-level analysisen
dc.subjectspatial analysisen
dc.subjectquasi-Monte Carlo sequencesen
dc.subjectdata clusteringen
dc.subjectGaussian quadratureen
dc.subjectsimulation-based econometric estimationen
dc.subjecttravel mode choice modelingen
dc.titleA multi-level cross-classified model for discrete response variablesen
dc.typeArticleen
dc.description.departmentCivil, Architectural, and Environmental Engineeringen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record