• Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    On the hydraulic bulge testing of thin sheets

    Icon
    View/Open
    MERSCH-THESIS-2013.pdf (6.540Mb)
    Date
    2013-12
    Author
    Mersch, John Philip
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    The bulge test is a commonly used experiment to establish the material stress-strain response at the highest possible strain levels. It consists of a metal sheet placed in a die with a circular opening. It is clamped in place and inflated with hydraulic pressure. In this thesis, a bulge testing apparatus was designed, fabricated, calibrated and used to measure the stress-strain response of an aluminum sheet metal and establish its onset of failure. The custom design incorporates a draw-bead for clamping the plate. A closed loop controlled servohydraulic pressurization system consisting of a pressure booster is used to pressurize the specimens. Deformations of the bulge are monitored with a 3D digital image correlation (DIC) system. Bulging experiments on 0.040 in thick Al-2024-T3 sheets were successfully performed. The 3D nature of the DIC enables simultaneous estimates of local strains as well as the local radius of curvature. The successful performance of the tests required careful design of the draw-bead clamping arrangement. Experiments on four plates are presented, three of which burst in the test section as expected. Finite deformation isotropic plasticity was used to extract the true equivalent stress-strain responses from each specimen. The bulge test results correlated well with the uniaxial results as they tended to fall between tensile test results in the rolling and transverse directions. The bulge tests results extended the stress-strain response to strain levels of the order of 40%, as opposed to failure strains of the order of 10% for the tensile tests. Three-dimensional shell and solid models were used to investigate the onset of localization that precedes failure. In both models, the calculated pressure-deformation responses were found to be in reasonable agreement with the measured ones. The solid element model was shown to better capture the localization and its evolution. The corresponding pressure maximum was shown to be imperfection sensitive.
    Department
    Engineering Mechanics
    Description
    text
    Subject
    Bulge test
    Aluminum
    Sheet metal
    Digital image correlation
    ABAQUS
    Finite elements
    URI
    http://hdl.handle.net/2152/23655
    Collections
    • UT Electronic Theses and Dissertations
    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentThis CollectionDate IssuedAuthorsTitlesSubjectsDepartment

    My Account

    Login

    Information

    AboutContactPoliciesGetting StartedGlossaryHelpFAQs

    Statistics

    View Usage Statistics
    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin