• Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Proximity operations of nanosatellites in Low Earth Orbit

    Icon
    View/Open
    ALMOND-THESIS-2013.pdf (3.686Mb)
    Date
    2013-12
    Author
    Almond, Scott Douglas
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    A mission architecture consisting of two NASA LONESTAR-2 satellites in Low Earth Orbit is considered. The craft are equipped with cross-communication radios and GPS units. Analyses are conducted for ejection, thruster and attitude maneuvers to achieve objectives of the mission, including sustained communications between the craft. Simulations are conducted to determine the duration of the communication window following the initial separation of the two craft. Recommendations are made to maximize this window while accounting for attitude constraints and the effects of atmospheric drag. Orbital mechanics and control theory are employed to form an algorithm for filtering GPS position fixes. The orbit-determination algorithm accounts for the effects of drag and Earth’s oblateness. Procedures are formed for verifying the initial separation velocities of two spacecraft and for measuring the velocity imparted by impulsive thruster maneuvers. An algorithm is also created to plan the timing and magnitude of corrective thruster maneuvers to align the orbital planes of the two craft. When the craft pass out of communication range, a ground station is used to relay data and commands to conduct state rendezvous procedures. A plan for coordinated attitude maneuvers is developed to strategically utilize the cumulative effects of drag and orbit decay to align the craft over long time periods. The methodologies developed here extend prior research into close proximity operations, forming the foundation for autonomous on-orbit rendezvous under a broader set of initial conditions.
    Department
    Aerospace Engineering
    Description
    text
    Subject
    Cubesat
    Nanosatellite
    Drag
    Thruster
    Atmosphere
    Kalman
    Filter
    Orbit
    Mechanics
    Ode45
    J2
    Oblateness
    URI
    http://hdl.handle.net/2152/23530
    Collections
    • UT Electronic Theses and Dissertations
    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentThis CollectionDate IssuedAuthorsTitlesSubjectsDepartment

    My Account

    Login

    Information

    AboutContactPoliciesGetting StartedGlossaryHelpFAQs

    Statistics

    View Usage Statistics
    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin