TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Nanocomposite particles as theranostic agents for cancer

    Thumbnail
    View/Open
    Larson_dissertation_20126c.pdf (2.903Mb)
    Date
    2012-08
    Author
    Larson, Timothy Arne
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    The exploration of nanoparticles for applications in medicine has grown dramatically in recent years. Due to their size, nanoparticles provide an ideal platform for combining multiple functionalities and interfacing directly with the biological realm. Additionally, nanoparticles can have physical properties that don't naturally exist in biology. Metal nanoparticles in particular have unique optical and magnetic properties which have driven nanomaterials research. The optical properties of gold nanoparticles and the magnetic properties of iron nanoparticles make them suitable for use as contrast agents in diagnostics and for radiation enhancement in therapeutic applications. The strong optical absorption and scattering and the nature of the conduction electrons of gold particles makes them ideal contrast agents for two-photon microscopy, photoacoustic imaging, and photothermal therapy. The superparamagnetic nature of iron oxide nanoparticles is clearly visible in magnetic resonance imaging, rendering them suitable as whole-body imaging contrast agents. All nanoparticle types can serve as delivery vehicles for drugs consisting of small molecules, peptides, or nucleic acids. This multiplicity of characteristics renders nanoparticles suitable for use in combining diagnosis and therapy, such as using particles to first detect the spatial extent of a cancer, and then to enhance near-infrared radiation in the tissue optical window to induce localized heating of diseased tissue. This combined approach requires both a mechanism of enhanced imaging contrast and a localized therapeutic mechanism, and the studies presented in this dissertation present work both on these aspects. By coating iron oxide nanoparticle cores with gold shells, it is possible to obtain a nanoparticle with both magnetic and optical properties. While individual gold nanoparticles do not absorb light in the infrared, receptor-mediated aggregation and the plasmon coupling effect lead to enhanced optical absorption only in diseased tissue. In addition to exploring these advanced applications, this work presents a fundamental investigation into the stability of gold nanoparticles in biological media. A previously unknown mechanism of gold nanoparticle destabilization and opsonization is presented and supported, along with a technique for reducing this opsonization and greatly enhancing the stability of gold particles in biological applications. This work will provide guidance to future designs of nanoparticle systems.
    Department
    Biomedical Engineering
    Description
    text
    Subject
    Gold nanoparticles
    Cancer
    Optical imaging
    URI
    http://hdl.handle.net/2152/22234
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin