TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The effects of [beta]-hydroxy-[beta]-methylbutyrate (HMB) and leucine on cellular signaling pathways controlling protein synthesis and degradation during sedentary and post-exercise recovery in skeletal muscle

    Thumbnail
    View/Open
    liao_dissertation_20126.pdf (4.873Mb)
    Date
    2012-08
    Author
    Liao, Yi-Hung
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    Recent research suggests that [beta]-hydroxy-[beta]-methylbutyrate (HMB), a metabolite of leucine (Leu), increases muscle mass and attenuates muscle damage during resistance training. Although Leu acts as a potent stimulator of protein synthesis, HMB, but not Leu, has been reported to be effective in suppressing proteolysis in skeletal muscle. However, mechanisms for the effects of HMB on cell signaling pathways controlling muscle protein turnover during rest and after endurance exercise are still poorly understood. Furthermore, the effects of HMB on cell signaling pathways controlling protein synthesis and degradation under normal in vivo conditions warrant further investigation. For optimal gains in muscle mass, the appropriate type and amount of protein (PRO) is required for positive protein balance to occur in skeletal muscle. Therefore, this dissertation was designed to determine the effect of HMB, PRO and Leu, individually and in combination, on the regulation of cellular signaling pathways controlling muscle protein turnover during sedentary and post-exercise conditions. Study 1 demonstrated that, compared with HMB and PRO alone, the combination of HMB and PRO was more effective in activating the mTOR signaling pathway, which controls protein synthesis, and inhibiting FOXO3A, a major regulator of the ubiquitin-proteasome proteolytic signaling pathway. Study 2 demonstrated that, compared with its individual components, a novel HMB/PRO/Leu supplement better activated protein-synthetic signals and inhibited proteolytic signals in skeletal muscle, and these effects were better sustained. Finally, Study 3 demonstrated that adding Leu to PRO-enriched mixtures after exercise additively activated protein-synthetic signals in a fiber type-specific manner, and adding HMB clearly inhibited proteolytic signaling proteins. Furthermore, provision of an HMB/PRO/Leu supplement after exercise was found to favorably modulate signaling pathways controlling both protein synthesis and degradation. Taken together, the results of these studies suggest that a novel nutrient supplement, composed of HMB, Leu and PRO, additively enhances the intracellular signaling proteins controlling protein synthesis and attenuates signaling proteins controlling proteolysis in skeletal muscle during sedentary and post-exercise recovery. Therefore, such a supplement may be beneficial for both athletic and therapeutic purposes.
    Department
    Kinesiology and Health Education
    Description
    text
    Subject
    Whey protein
    mTOR
    FOXO3A
    AMPK
    Interval exercise
    URI
    http://hdl.handle.net/2152/22135
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin