TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Nanostructured materials for solar energy conversion

    Thumbnail
    View/Open
    HOANG-DISSERTATION-2013.pdf (4.172Mb)
    Date
    2013-05
    Author
    Hoang, Son Thanh
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    The energy requirements of our planet will continue to grow with increasing world population and the modernization of currently underdeveloped countries. This will force us to search for environmental friendly alternative energy resources. Solar energy by far provides the largest of all renewable energy resources with an average power of 120 000 TW irradiated from the sun which can be exploited through solar electricity, solar fuel, and biomass. Nanostructured materials have been the subject of extensive research as the building block for construction of solar energy conversion devices for the past decades. The nanostructured materials sometimes have peculiar electrical and optical properties that are often shape and size dependent and are not expected in the bulk phase. Recent research has focused on new strategies to control nanostructured morphologies and compositions of semiconductor materials to optimize their solar conversion efficiency. In this dissertation, we discuss the synthesis and characterizations of one dimensional nanostructured TiO₂ based materials and their solar energy conversion applications. We have developed a solvothermal synthesis method for growing densely packed, vertical, single crystalline TiO₂ rutile nanowire arrays with unprecedented small feature sizes of 5 nm and lengths up to 4.4 [mu]m. Because of TiO₂'s large band gap, the working spectrum of TiO₂ is limited to the ultra violet region with photons shorter than 420 nm. We demonstrate that the active spectrum of TiO₂ can be shifted to ~ 520 nm with incorporation of N via nitridation of TiO₂ nanowires in NH₃ flow. In addition, we demonstrate a synergistic effect involving hydrogenation and nitridation cotreatment of TiO₂ nanowires that further redshift the active spectrum of TiO₂ to 570 nm. The Ta and N co-incorporated TiO₂ nanowires were also prepared and showed significant enhancement in photoelectrochemical performance compared to mono-incorporation of Ta or N. This enhancement is due to fewer recombination centers from charge compensation effects and suppression of the formation of an amorphous layer on the nanowires during the nitridation process. Finally, we have developed hydrothermal synthesis of single crystalline TiO₂ nanoplatelet arrays on virtually all substrates and demonstrated their applications in water photo-oxidation and dye sensitized solar cells.
    Department
    Chemical Engineering
    Description
    text
    Subject
    Solar energy conversion
    Water splitting
    TiO2
    Nanowires
    N doping
    URI
    http://hdl.handle.net/2152/22105
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin