TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    IRSS: integrated reservoir simulation system

    Thumbnail
    View/Open
    zhangj27284.pdf (6.279Mb)
    Date
    2005
    Author
    Zhang, Jiang
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    Increasing hydrocarbon production via advanced technologies commonly involves the use of numerical simulation of the associated processes to minimize the risk involved in development decisions. The oil industry today requires much more detailed analysis with a greater demand for reservoir simulations with geological, physical, and chemical models than in the past. Without detailed simulations it is very unlikely that cost effective recovery processes can be developed and applied economically. Although reservoir simulation software is currently available, there are still many obstacles to its widespread and effective use in the upstream oil and gas industry. These include: z Data preparation and output analysis are often extremely time-consuming because of the amount and complexity of the required data. z Large uncertainties associated with the petrophysical properties and methods for incorporating these uncertainties into performance predictions are not currently time- or cost-effective. z Performance optimization using reservoir simulation is tedious and inefficient because of the time and effort required for generating, processing, and analyzing a large number of scenarios. The goal of this dissertation is to design and implement a user-friendly framework to overcome some of the abovementioned obstacles to promote the routine application of reservoir simulation in the processes of design and optimization. The framework includes several modules to identify the variables that have the most impact on hydrocarbon recovery using the concept of experimental design and response surface method. Several oil reservoir simulators such as VIP 1 , ECLIPSE 2 , and UTCHEM are integrated to perform the flow simulations associated with different hydrocarbon recovery processes. The framework implements an economic model that automatically imports the simulation production data to evaluate the profitability of a particular design. A large number of reservoir simulations can be run efficiently using a cluster of computers. This is the first time that a computing platform is developed with all these capabilities. Several field-scale applications are studied using our approach: - Well placement optimization taking into account reservoir and fluid uncertainties, - Surfactant/polymer flooding design and optimization with uncertainties in reservoir characterization, residual oil saturation, surfactant adsorption, price of crude oil and chemical, and discount rate, and - A surfactant remediation process with uncertainties in aquifer properties. According to our experience, the approach proposed in this dissertation can significantly save time for process optimization by a large factor compared to traditional method. This time savings includes for input preparation, postprocessing the simulation results, and the simulation execution time. A case study presented in this work shows that the clock time savings can be of the order of 40 for processing 158 surfactant/polymer simulations using UTCHEM.
    Department
    Petroleum and Geosystems Engineering
    URI
    http://hdl.handle.net/2152/2208
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin