The performance of lateral spread sites treated with prefabricated vertical drains : physical and numerical models

Date

2013-05

Authors

Howell, Rachelle Lee

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Drainage methods for liquefaction remediation have been in use since the 1970's and have traditionally included stone columns, gravel drains, and more recently prefabricated vertical drains. The traditional drainage techniques such as stone columns and gravel drains rely upon a combination of drainage and densification to mitigate liquefaction and thus, the improvement observed as a result of these techniques cannot be ascribed solely to drainage. Therefore, uncertainty exists as to the effectiveness of pure drainage, and there is some hesitancy among engineers to use newer drainage methods such as prefabricated vertical drains, which rely primarily on drainage rather than the combination of drainage and densification. Additionally, the design methods for prefabricated vertical drains are based on the design methods developed for stone columns and gravel drains even though the primary mechanisms for remediation are not the same. The objectives of this research are to use physical and numerical models to assess the effectiveness of drainage as a liquefaction remediation technique and to identify the controlling behavioral mechanisms that most influence the performance of sites treated with prefabricated vertical drains. In the first part of this research, a suite of three large-scale dynamic centrifuge tests of untreated and drain-treated sloping soil profiles was performed. Acceleration, pore pressure, and deformation data was used to evaluate the effectiveness of drainage in reducing liquefaction-induced lateral deformations. The results showed that the drains reduced the generated peak excess pore pressures and expedited the dissipated of pore water pressures both during and after shaking. The influence of the drains on the excess pore pressure response was found to be sensitive to the characteristics of the input motion. The drainage resulted in a 30 to 60% reduction in the horizontal deformations and a 20 to 60% reduction in the vertical settlements. In the second part of this research, the data and insights gained from the centrifuge tests was used to develop numerical models that can be used to investigate the factors that most influence the performance of untreated and drain-treated lateral spread sites. Finite element modeling was performed using the OpenSees platform. Three types of numerical models were developed - 2D infinite slope unit cell models of the area of influence around a single drain, 3D infinite slope unit cell models of the area of influence around a single drain, and a full 2D plane strain model of the centrifuge tests that included both the untreated and drain-treated slopes as well as the centrifuge container. There was a fairly good match between the experimental and simulated excess pore pressures. The unit cell models predicted larger horizontal deformations than were observed in the centrifuge tests because of the infinite slope geometry. Issues were identified with the constitutive model used to represent the liquefiable sand. These issues included a coefficient of volumetric compressibility that was too low and a sensitivity to low level accelerations when the stress path is near the failure surface. In the final part of this research, the simulated and experimental data was used to examine the relationship between the generated excess pore water pressures and the resulting horizontal deformations. It was found that the deformations are directly influenced by both the excess pore pressures and the intensity of shaking. There is an excess pore pressure threshold above which deformations begin to become significant. The horizontal deformations correlate well to the integral of the average excess pore pressure ratio-time history above this threshold. They also correlate well to the Arias intensity and cumulative absolute velocity intensity measures.

Description

text

LCSH Subject Headings

Citation