TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Inhalation exposures during cleaning activities

    Thumbnail
    View/Open
    EARNEST-DISSERTATION-2013.pdf (13.97Mb)
    Date
    2013-05
    Author
    Earnest, Clive Matthew, Jr.
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    Studies show that the use of cleaning products is related to adverse respiratory health effects ranging from irritation to asthma. Yet exposure to these chemicals is poorly understood. This dissertation summarizes the current state of knowledge of inhalation exposure to toxic chemicals in consumer cleaning products. An improved two-zone model that treats personal air space as distinct from bulk room air is presented. The model accounts for air exchange between the two zones, dynamic source characteristics (i.e., the time-varying liquid concentrations and emission rates of pollutants within a mixture), and the characteristics of chemical use (e.g., how frequently a cleaning chemical is applied to a new area). To assess exposure to cleaning products and validate the improved two-zone model twenty-three experiments, encompassing six cleaning scenarios, were completed in an environmentally-controlled chamber with a thermal mannequin. Then, the model was used to predict exposure for four hypothetical cleaning scenarios and compared against other models. The model's applicability is restricted by limited data available for parameterization. At low air exchange rates gas-phase experimental results show concentrations in the breathing-zone of the mannequin exceeded concentrations predicted by the well-mixed model by factors up to 2.1. Breathing-zone concentrations also exceed those measured at centralized room monitors by factors up to 6.1. Thus, studies that use the centralized room monitors or the well-mixed model as a surrogate for breathing-zone concentrations could potentially underpredict exposure at low air exchange rates. The two-zone model provides the best prediction of exposure to cleaning tasks, at low air exchange rates. The next best model is the well-mixed model with an exponentially decreasing emission rate, followed by the well-mixed model with a constant emission rate. At high air exchange rates the well-mixed assumption appears to be valid. The inner-zonal volume and inter-zonal air exchange were independent of fresh air ventilation rate. But both were dependant on the mannequin's body position, with standing having the highest inner-zonal volume and lowest intra-zonal air exchange rate of the three body positions investigates (standing, bent over 45°, and hands and knees).
    Department
    Civil, Architectural, and Environmental Engineering
    Description
    text
    Subject
    Exposure
    Indoor air
    Two-zone model
    Cleaning products
    URI
    http://hdl.handle.net/2152/21767
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin