• Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Targeting triple negative human breast cancer with omega-3 docosahexaenoic acid (DHA) and tocotrienol

    Icon
    View/Open
    XIONG-DISSERTATION-2013.pdf (2.971Mb)
    Date
    2013-05
    Author
    Xiong, Ailian
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    Triple negative breast cancers (TNBCs) account for ~15-20% of human breast cancers in Western countries. TNBCs are associated with poor prognosis and a low five year survival rate due, in part, to high rates of tumor recurrence, multi-drug resistance, metastasis, and therapeutic toxicity. Tumor initiating cells (TICs) or cancer stem cells (CSCs) are proposed to be responsible for the origin and maintenance of tumors as well as cancer recurrence, metastasis and drug resistance. Nutritionally-based low- to non-toxic therapeutic nutrients that eliminate both bulk tumor cells (non-TICs) and TICs have potential for prevention and treatment of primary and metastatic cancers, including TNBCs. Omega-3 fatty acid-docosahexaenoic acid (DHA) and certain vitamin E compounds [gamma- and delta- tocopherols [mathematical symbols] and tocotrienols [mathematical symbols]], separately and in combination, were investigated for their ability to eliminate non-TICs and TICs in human TNBCs and the mechanisms of action were studied. DHA induced apoptosis in several human TNBC cell lines via activation of endoplasmic-reticulum stress (ER stress) mediated C/EBP (CCAAT/enhancer binding protein) homologous protein (CHOP)/death receptor-5 (DR5) pro-apoptotic signaling involving caspases-8 and 9. DHA eliminated TICs as measured by elimination of aldehyde dehydrogenase active (ALDH⁺) population and inhibition of mammosphere formation. DHA eliminated TICs via suppression of phosphorylated Signal transducers and activators of transcription 3 (pStat-3) as well as downstream mediators cellular myelocytomatosis oncogene (c-Myc) and cyclin D1. SiRNA to Stat-3 reduced the number of ALDH⁺ TNBCs cells and reduced pStat-3, c-Myc, and cyclin D1 mediators, showing that Stat-3 is necessary for maintaining ALDH⁺ population and that c-Myc and cyclin D1 are downstream mediators of Stat-3. Studies also demonstrated that vitamin E compounds possess distinct anticancer activities. In summary, studies provide novel insights into therapeutic potential of DHA and certain vitamin E compounds for treatment of TNBCs.
    Department
    Nutritional Sciences
    Description
    text
    Subject
    Vitamin E
    Apoptosis
    Breast cancer
    Tumor initiating cells
    Docosahexaenoic acid
    URI
    http://hdl.handle.net/2152/21529
    Collections
    • UT Electronic Theses and Dissertations
    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentThis CollectionDate IssuedAuthorsTitlesSubjectsDepartment

    My Account

    Login

    Information

    AboutContactPoliciesGetting StartedGlossaryHelpFAQs

    Statistics

    View Usage Statistics
    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin