• Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Dynamics of foam mobility in porous media

    Icon
    View/Open
    BALAN-DISSERTATION-2013.pdf (5.432Mb)
    Date
    2013-05
    Author
    Balan, Huseyin Onur
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    Foam reduces gas mobility in porous media by trapping substantial amount of gas and applying a viscous resistance of flowing lamellas to gas flow. In mechanistic foam modeling, gas relative permeability is significantly modified by gas trapping, while an effective gas viscosity, which is a function of flowing lamella density, is assigned to flowing gas. A complete understanding of foam mobility in porous media requires being able to predict the effects of pressure gradient, foam texture, rock and fluid properties on gas trapping, and therefore gas relative permeability, and effective gas viscosity. In the foam literature, separating the contributions of gas trapping and effective gas viscosity on foam mobility has not been achieved because the dynamics of gas trapping and its effects on the effective gas viscosity have been neglected. In this study, dynamics of foam mobility in porous media is investigated with a special focus on gas trapping and its effects on gas relative permeability and effective gas viscosity. Three-dimensional pore-network models representative of real porous media coupled with fluid models characterizing a lamella flow through a pore throat are used to predict flow paths, threshold pressure gradient and Darcy velocity of foam. It is found that the threshold path and the pore volume open above the threshold pressure are independent of the fluid model used in this study. Furthermore, analytical correlations of flowing gas fraction as functions of pressure gradient, lamella density, rock and fluid properties are obtained. At a constant pressure gradient, flowing gas fraction increases as overall lamella density decreases. In the discontinuous-gas foam flow regime, there exists a threshold pressure gradient, which increases with overall lamella density. One of the important findings of this study is that gas relative permeability is a strong non-linear function of flowing gas fraction, opposing most of the existing theoretical models. However, the shape of the relative gas permeability curve is poorly sensitive to overall lamella density. Flowing and trapped lamella densities change with pressure gradient. Moreover, analytical correlations of effective gas viscosity as functions of capillary number, lamella density and rock properties are obtained by up-scaling a commonly used pore-scale apparent gas (lamella) viscosity model. Effective gas viscosity increases nonlinearly with flowing lamella density, which opposes to the existing linear foam viscosity models. In addition, the individual contributions of gas trapping and effective gas viscosity on foam mobility are quantified for the first time. The functional relationship between effective gas viscosity and flowing lamella density in the presence of dynamic trapped gas is verified. A mechanistic foam model is developed by using the analytical correlations of flowing gas fraction and effective gas viscosity generated from the pore-network study and a modified population balance model. The developed model is successful in simulating unsteady-state and steady state flow of foam through porous media. Moreover, the flow behaviors in high- and low-quality flow regimes are verified by the experimental studies in the literature. Finally, the simulation results are successfully history matched with two different core-flood data.
    Department
    Petroleum and Geosystems Engineering
    Description
    text
    Subject
    Foam
    Mechanistic foam model
    Foam mobility
    Foam texture
    Gas trapping
    Network modeling
    Yield stress fluids
    Lamella
    Mobility control
    Foam viscosity
    Simulation
    URI
    http://hdl.handle.net/2152/21475
    Collections
    • UT Electronic Theses and Dissertations
    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentThis CollectionDate IssuedAuthorsTitlesSubjectsDepartment

    My Account

    Login

    Information

    AboutContactPoliciesGetting StartedGlossaryHelpFAQs

    Statistics

    View Usage Statistics
    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin