TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Discovery and design of an optimal microRNA loop substrate

    Thumbnail
    View/Open
    HWANG-DISSERTATION-2013.pdf (8.525Mb)
    Date
    2013-05
    Author
    Hwang, Tony Weiyang
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    RNA interference, or RNAi, is a cellular mechanism that describes the sequence-specific post transcriptional gene silencing observed in plants, fungi, and metazoans, facilitated by short double-stranded RNAs and microRNAs (miRNAs) with sequence complementarity to target mRNAs. Many of the regulatory mechanisms of the RNAi pathway by which these small miRNAs are first processed, from primary transcripts to precursor miRNA stemloops and then to mature miRNAs, by the multiprotein complexes Drosha and Dicer, respectively, still remain unknown. Within the miRNA biogenesis pathway, there is strong evidence pointing to the terminal loop region as an important regulatory determinant of miRNA maturation. To further elucidate the terminal loop's exerted control over miRNA processing, we propose a combined in vitro / in vivo selection experiment of a randomized pri-miRNA terminal loop library in search of an optimally processed pre-miRNA substrate. Here, we report the isolation of a premiRNA terminal loop sequence that is favorably processed by Drosha in vivo but also functions as an effective cis-inhibitor of further pre-miRNA processing by downstream Dicer. This terminal loop also demonstrated modular properties of Dicer inhibition in two different miRNAs, and should prove useful in further elucidating the mechanisms of miRNA processing in context of a newly proposed Dicer cleavage model (Gu et al. 2012). In combination, these findings may have important implications in both Drosha and Dicer's direct role in gene expression and miRNA biogenesis, the regulatory proteins that modulate their respective functions, as well as the potential development of new design rules for the more efficient processing and targeting of miRNA-based technology and RNAi therapeutics.
    Department
    Cellular and Molecular Biology
    Description
    text
    Subject
    RNA
    miRNA
    Terminal loop
    Drosha
    Dicer
    Selection
    URI
    http://hdl.handle.net/2152/20870
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin