Show simple item record

dc.contributor.advisorZhang, Xiaojing, Ph. D.
dc.contributor.advisorYu, Edward T.
dc.creatorWang, Youmin, 1986-en
dc.date.accessioned2013-07-15T15:51:23Zen
dc.date.issued2013-05en
dc.date.submittedMay 2013en
dc.identifier.urihttp://hdl.handle.net/2152/20792en
dc.descriptiontexten
dc.description.abstractCancer is a world menace. After years of endeavor seeking the end of it, people started to realize that no matter how powerful the therapy could be, detection at early stage is always a cheaper, easier and more successful solution compared with curative methods for cancer developed onto its advanced stage. However, relatively few early-detection approaches have proven sufficiently effective and practical for mass use as a point-of-care tool. An early-cancer screening tool integrating the desired features of sensitive, informative, portable, and cost-effective is in need for the doctors. The progress in optical imaging and Micro-electro-mechanical system (MEMS) technology offers a promise for an innovative cancer screening alternative that is non-invasive, radiation-free, portable and potentially cost-effective. This dissertation investigates handheld instrumentation as multi-modalities of miniature imaging probes with various designs of MEMS devices, to obtain real-time images of epithelial tissue optical and physiological properties, combining the quantitative advantages of spectral analysis with the qualitative benefits of imaging to distinguish early cancer. This dissertation in sequence presents the handheld instruments in the fashions of Laser-scanning confocal microscopy (LSCM), optical diffuse reflectance imaging, nonlinear optical imaging modalities with their subsequent image-guided managements in oral cancer, skin cancer detection, circulating tumor cell (CTC) imaging, and imaging guided surgeries. One of the main challenges facing miniaturization lies in the mechanism of beam deflection across the sample. This dissertation introduces two generations of MEMS devices desgined, fabricated and incorporated in the imaging probes. A two-axis vertical comb driven silicon micromirror was used in the development of a handheld LSCM for oral cancer detection. Though obtaining numerous advantages, this first generation silicon MEMS micromirror suffers from small aperture size and high voltage requirement for actuation, which result in low collection efficiency in fluorescence imaging and medial safety concerns, respectively. Therefore a stainless steel scanner compatible with electrical discharge machining (EDM) process was fabricated with simplified process, low-voltage magnetic actuation and large fluorescence collection efficiency, with its capability demonstrated in the incorporation and embodiment of a handheld hyperspectral nonlinear imaging probe. Besides, software and controlling innovations for handheld imaging modalities are presented. A feedback controlling system for MEMS scanning status monitoring was developed for stabilized imaging rendering. For the sake of further improved imaging stability in handheld imaging and to enable on-site mosaic for large field viewing, a handheld mosaic system was developed and presented.en
dc.format.mimetypeapplication/pdfen
dc.language.isoen_USen
dc.subjectMicro-electro-mechanical system (MEMS)en
dc.subjectLaser-scanning imagingen
dc.subjectEarly cancer diagnosisen
dc.subjectHyperspectral imagingen
dc.subjectConfocal microscopyen
dc.subjectOptical diffuse reflectance imagingen
dc.subjectNonlinear optical imagingen
dc.titleMiniature laser scanning micro-endoscopes : multi-modality imaging system and biomedical applicationsen
dc.date.updated2013-07-15T15:51:23Zen
dc.description.departmentElectrical and Computer Engineeringen
thesis.degree.departmentElectrical and Computer Engineeringen
thesis.degree.disciplineElectrical and Computer Engineeringen
thesis.degree.grantorThe University of Texas at Austinen
thesis.degree.levelDoctoralen
thesis.degree.nameDoctor of Philosophyen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record