TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The secondary permeability of "impervious" cover in Austin, Texas

    Thumbnail
    View/Open
    TJWILESThesis2007.pdf (2.846Mb)
    Date
    2007-12
    Author
    Wiles, Thomas Jefferson, 1970-
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    The term "impervious" is commonly used in urban settings to describe the permeability of buildings, roads, and parking lots. When estimating recharge to an aquifer underlying an urbanized area, impervious cover becomes a prime consideration. It is commonly assumed that an increase in impervious cover leads to a decrease in precipitation recharge. However, even a cursory glance at most roads, sidewalks, or parking lots reveals that, far from being impervious, there are abundant fractures that may provide avenues of infiltration. For this study, method was developed to determine the secondary permeability of pavements using a double ring infiltrometer to measure the infiltration rate of water into fractured pavements. Linear extrapolation is employed to determine the infiltration rate as the water depth approaches zero, which is used as a proxy for hydraulic conductivity by assuming that the gradient is unity. Data were collected on concrete and asphalt pavements located in Austin, Texas, at each point a fracture or expansion joint intersected along 30-meter scanlines. By dividing the sum of the discharges for each fracture by the area represented by the scanline we are able to determine the equivalent-porous-media hydraulic conductivity. The equivalent hydraulic conductivities for discrete fractures were found to range at least three orders of magnitude, from >10⁻² to 10⁻⁵ cm/sec; scanline hydraulic conductivities range two orders of magnitude from >10⁻⁴ to 10⁻⁶ cm/sec; permeability along the scanlines tends to be dominated by one or two highly conductive fractures; and the hydraulic conductivity of the entire paved surface is 5.9·10⁻⁵ cm/s. Both apertures and point hydraulic conductivities were found to have logarithmic distributions but cross plots demonstrated no correlation, which indicated that a combination of the fill material and sub grade, not the fractures and expansion joints themselves, limit infiltration. By multiplying the paved surface hydraulic conductivity by the time the surface can be expected to be saturated, we find that 170 mm or 21 percent of mean annual rainfall is available as potential recharge. When coupled with an enhanced subsurface permeability structure resulting from the installation of utilities and the reduction of evapotranspiration from the reduction of vegetation, the net effect of roads and parking lots could be an increase in precipitation recharge.
    Department
    Geological Sciences
    Description
    text
    URI
    http://hdl.handle.net/2152/20402
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin