TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Functional recovery of a volumetric skeletal muscle loss injury using mesenchymal stem cells in a PEGylated fibrin gel seeded on an extracellular matrix

    Thumbnail
    View/Open
    merscham_thesis_2012912.pdf (2.920Mb)
    Date
    2012-12
    Author
    Merscham, Melissa Marie
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    This study investigated the effect of bone marrow derived mesenchymal stem cells (MSCs) in a PEGylated fibrin gel (PEG) seeded into a decellularized extracellular matrix (ECM) on recovery of skeletal muscle following a volumetric muscle loss (VML) injury. Six to nine month old male Sprague-Dawley rats were used in this study. Approximately one-third of the skeletal muscle mass of the lateral gastrocnemius (LGAS) was removed from the LGAS, which was immediately replaced with an acellular ECM of the same dimensions. Seven days after injury, animals were injected with one of four solutions: saline (SAL), MSCs (MSC), PEGylated fibrin hydrogel (PEG), or MSCs in PEG (PEG+MSC). Maximal isometric tetanic tension (Po) of the LGAS was assessed fifty-six days after VML injury, followed by histological evaluation. VML injury resulted in a functional impairment of the LGAS capable of producing 76.1± 4.9% of the force generated in the non-injured contralateral LGAS. Tetanic tension of the PEG+MSC treated group was significantly higher compared to all other treatment groups (p < 0.05), although specific tension (N/cm2) in the PEG+MSC group (79.7±4.0%) was only significantly higher compared to SAL (58.2±3.0) and PEG (64.0±2.1%) treated groups (p < 0.05). However, LGAS mass was significantly higher in the PEG+MSC group compared to all other groups (p < 0.05). These findings suggest the combination of the PEG+MSC did not lead to a significant increase in muscle function compared to MSC treatment alone, and demonstrates the importance of MSCs in skeletal muscle regeneration in VML injury models. However, as evident by the significant increase in LGAS mass, PEG+MSC treatment may lead to histological differences not evaluated in this study. Gross morphology of the repaired gastrocnemius was indistinguishable from the contralateral control.
    Department
    Kinesiology and Health Education
    Description
    text
    Subject
    Volumetric muscle loss
    Skeletal muscle regeneration
    Mesenchymal stem cells
    PEGylated fibrin
    URI
    http://hdl.handle.net/2152/20041
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin