TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A classifier-guided sampling method for early-stage design of shipboard energy systems

    Thumbnail
    View/Open
    BACKLUND-DISSERTATION-2012.pdf (2.368Mb)
    Date
    2012-12
    Author
    Backlund, Peter Bond
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    The United States Navy is committed to developing technology for an All-Electric Ship (AES) that promises to improve the affordability and capability of its next-generation warships. With the addition of power-intensive 21st century electrical systems, future thermal loads are projected to exceed current heat removal capacity. Furthermore, rising fuel costs necessitate a careful approach to total-ship energy management. Accordingly, the aim of this research is to develop computer tools for early-stage design of shipboard energy distribution systems. A system-level model is developed that enables ship designers to assess the effects of thermal and electrical system configurations on fuel efficiency and survivability. System-level optimization and design exploration, based on these energy system models, is challenging because the models are sometimes computationally expensive and characterized by discrete design variables and discontinuous responses. To address this challenge, a classifier-guided sampling (CGS) method is developed that uses a Bayesian classifier to pursue solutions with desirable performance characteristics. The CGS method is tested on a set of example problems and applied to the AES energy system model. Results show that the CGS method significantly improves the rate of convergence towards known global optima, on average, when compared to genetic algorithms.
    Department
    Mechanical Engineering
    Description
    text
    Subject
    Classifier-guided sampling
    Metamodel-based design
    Engineering optimization
    Discrete variables
    Discontinuous response
    System-level design
    All-electric ship
    Shipboard energy systems
    URI
    http://hdl.handle.net/2152/19624
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin