TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Physical aging of thin glassy polymer films

    Thumbnail
    View/Open
    huangy49950.pdf (1.607Mb)
    Date
    2005
    Author
    Huang, Yu
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    This research work was designed to systematically investigate the physical aging of glassy polymer thin films in terms of the effects of chemical structure of the polymer, film thickness, aging temperature and molecular weight. This research is fundamental in nature but is of both scientific interest and practical importance, especially to gas separation industry where polymer thin films are essentially used as the selective layer in the asymmetric or composite membrane structures. Three glassy polymers relevant to gas separation industry, polysulfone, a polyimide and poly(2,6-dimethyl-1,4-phenylene oxide) were studied; these polymer films having thicknesses from ~ 400 nm to 62 µm were subjected to isothermal aging at three temperatures, ranging from 35 to 55ºC, for a period of up to ~ 400 days. Two major techniques were employed in probing the aging process including gas permeability measurement and refractive index measurement. Rigorous methodologies have been developed for studying the physical aging of free-standing thin polymer films to eliminate any other external effect that might impact the aging behavior. Ellipsometry has been employed to determine the thicknesses and refractive indices of these thin films. By using the methods developed, the reproducibility of gas permeability and refractive index change during physical aging was demonstrated as well as the thermoreversibility of physical aging. Ellipsometry revealed that this procedure leads to isotropic films having initial characteristics independent of film thickness. A substantial aging response via the permeability and refractive index changes, attributed to a decrease in polymer free volume, was observed at temperatures more than 150°C below Tg for thin films of each polymer compared to what is observed for the bulk polymers. The Lorentz-Lorenz equation was used to relate changes in refractive index to densification, or volume relaxation, with aging time. The films with thicknesses of approximately 400 nm of the three polymers exhibit an oxygen permeability decrease by as much as two-fold or more, about 14 to 15% increase in O2/N2 selectivity and about 0.6 to 1.5% increase in density at an aging time of 1,000 hours.
    Department
    Chemical Engineering
    Description
    text
    URI
    http://hdl.handle.net/2152/1940
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin