Show simple item record

dc.contributor.advisorWheeler, Mary F. (Mary Fanett)en
dc.creatorEslinger, Owen Johnen
dc.date.accessioned2008-08-28T22:23:05Zen
dc.date.available2008-08-28T22:23:05Zen
dc.date.issued2005en
dc.identifierb60728656en
dc.identifier.urihttp://hdl.handle.net/2152/1906en
dc.descriptiontexten
dc.description.abstractA set of discontinuous Galerkin (DG) finite element methods are proposed to solve the air-water, two-phase equations arising in shallow subsurface flow problems. The different time-splitting approaches detailed incorporate primal formulations, such as Oden-Baumann-Babuska DG (OBB-DG), Symmetric Interior Penalty Galerkin (SIPG), Non-Symmetric Interior Penalty Galerkin (NIPG), and Incomplete Interior Penalty Galerkin (IIPG); as well as a local discontinuous Galerkin (LDG) method applied to the saturation equation. The two-phase flow equations presented are split into sequential and implicit pressure/explicit saturation (IMPES) formulations. The IMPES formulation introduced in this work uses one of the primal DG formulations to solve the pressure equation implicitly at every time step, and then uses an explicit LDG scheme for saturation equation. This LDG scheme advances in time via explicit Runge-Kutta time stepping, while employing a Kirchoff transformation for the local solution of the degenerate diffusion term. As fluid saturations may be discontinuous at the interface between two material types, DG methods are a natural fit for this problem. An algorithm is introduced to efficiently solve the system of equations arising from the primal DG discretization of the model Poisson’s Equation on conforming grids. The eigenstructure of the resulting stiffness matrix is examined and the reliance of this system on the penalty parameter is detailed. This analysis leads to an algorithm that is computationally optimal and guaranteed to converge for the order of approximation p = 1. The algorithm converges independently of h and of the penalty parameter σ. Computational experiments show that this algorithm also provides an excellent preconditioning step for higher orders of approximation and extensions are given to 2D and 3D problems. Computational results are also shown for a more general second order elliptic equation, for example, cases with heterogeneous and non-isotropic K. The numerical schemes presented are verified on a collection of standard benchmark problems and the two-phase flow formulations are validated using empirical results from the groundwater literature. These results include bounded column infiltration problems in which the soil air becomes compressed and entrapped, as well as other shallow subsurface infiltration problems. It is shown that the IMPES approach introduced holds promise for the future, especially for problems with very small, or even zero, capillary pressure. Such problems are commonly found in the SPE literature. Finally, initial computational results are shown which relate to a simplified model of the CO2 sequestration problem.
dc.format.mediumelectronicen
dc.language.isoengen
dc.rightsCopyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works.en
dc.subject.lcshGalerkin methodsen
dc.subject.lcshTwo-phase flowen
dc.titleDiscontinuous Galerkin finite element methods applied to two-phase, air-water flow problemsen
dc.description.departmentComputational Science, Engineering, and Mathematicsen
dc.description.departmentComputational and Applied Mathematicsen
dc.identifier.oclc67130851en
dc.type.genreThesisen
thesis.degree.departmentComputational and Applied Mathematicsen
thesis.degree.disciplineComputational and Applied Mathematicsen
thesis.degree.grantorThe University of Texas at Austinen
thesis.degree.levelDoctoralen
thesis.degree.nameDoctor of Philosophyen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record