• Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stabilization of colloidal dispersions in supercritical carbon dioxide

    Icon
    View/Open
    dicksonj09087.pdf (13.88Mb)
    Date
    2005
    Author
    Dickson, Jasper Lane
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    Over the past decade, compressed carbon dioxide (CO2) has emerged as a possible alternative to traditional organic solvents in various industrial processes. Compared to other compressible fluids, CO2 is particularly appealing since it is inexpensive, relatively non-toxic, non-flammable, and possesses a mild critical point. Unfortunately, the solvent strength of CO2 is limited due to its lack of a permanent dipole moment and weak van der Waals interactions. To accommodate CO2’s limited solvation capacity, emulsions and colloidal dispersions are often stabilized with fluorinated surfactants and polymers. However, even for the most CO2-philic fluoropolymers, pressures above 100 bar are typically required to achieve good solvent conditions. In an attempt to increase the industrial applicability of CO2, a majority of this research is focused on the development of novel approaches to stabilize emulsions and colloids in liquid CO2 at low pressures. The use of solid particles in lieu of classical surfactants is demonstrated to allow for the stabilization of emulsions consisting of water and CO2 at low CO2 densities since stability is not dependent on tail solvation. The stability of these emulsions is shown to be highly dependent on the particle hydrophilicity and its subsequent contact angle at the water-CO2 interface. Concentrated dispersions of inorganic silica particles are stabilized at pressures as low as the vapor pressure through the formation of a cross-linked polymeric shell around the solid core. The presence of the polymeric shell allows for dispersibility by weakening the Hamaker interactions between the core-shell particles. The density-dependent interparticle interactions between these dispersed core-shell nanoparticles are quantified in terms of a diffusional second virial coefficient using dynamic light scattering. Finally, the water-CO2 and the solid-CO2 interfaces are investigated. Using high-pressure pendant-drop tensiometry, the water-CO2 interfacial tension is measured for a family of surfactants in order to investigate the relationship between surfactant molecular architecture and interfacial activity. Measurements of the CO2/water/solid contact angle on well defined homogeneous substrates as a function of CO2 pressure provide fundamental insight into the specific interactions between CO2 and the solid interface.
    Department
    Chemical Engineering
    Description
    text
    URI
    http://hdl.handle.net/2152/1894
    Collections
    • UT Electronic Theses and Dissertations
    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentThis CollectionDate IssuedAuthorsTitlesSubjectsDepartment

    My Account

    Login

    Information

    AboutContactPoliciesGetting StartedGlossaryHelpFAQs

    Statistics

    View Usage Statistics
    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin