Show simple item record

dc.contributor.advisorEkerdt, John G.en
dc.creatorFitzpatrick, Patrick Ryanen
dc.date.accessioned2012-10-16T17:22:46Zen
dc.date.available2012-10-16T17:22:46Zen
dc.date.issued2009-05en
dc.identifier.urihttp://hdl.handle.net/2152/18391en
dc.descriptiontexten
dc.description.abstractMotivated by the need for a Ge surface passivation layer, chemical vapor deposition of thin (< 10 nm) films of amorphous boron carbo-nitride (BCxNy) on Ge(100) surfaces were studied to assess film continuity, interface bonding, Ge oxidation prevention, and electrical passivation. BCxNy nominally 2.5-5 nm thick continuously covers Ge(100), as determined by ion scattering spectroscopy and two angle resolved x-ray photoelectron spectroscopy (ARXPS) techniques. ARXPS analysis reveals no evidence of an interfacial layer due to elemental intermixing at the BCxNy-Ge(100) interface. High resolution transmission electron microscopy images of HfO₂ / BCxNy / Ge(100) cross-sections reveal abrupt BCxNy-Ge(100) interfaces. XPS was used to track Ge oxidation of BCxNy-covered Ge(100) upon exposure to ambient, 50 °C deionized water, and a 250 °C atomic layer deposition HfO₂ process. If the BCxNy layer is continuous ([greater-than or equal to] ~ 4 nm), the underlying Ge(100) surface is not oxidized despite incorporation of O into BCxNy. Thinner films ([less than or equal to] 3.2 nm) permitted Ge(100) oxidation in each oxidizing environment studied. Ge nanowires with a 5.7 nm BCxNy coating were resistant to oxidation for at least 5 months of ambient exposure. C-V and I-V measurements were made for metal-insulator-semiconductor (MIS) structures fabricated from n-Si(100) and n-Ge(100) wafers passivated with 4.5-5 nm BCxNy. C-rich BC0.61N0.08 films studied up to this point exhibited large amounts of hysteresis and fixed negative charge, so they were abandoned in favor of N-rich BCxNy (0.09 [less than or equal to] x [less than or equal to] 0.15, 0.38 [less than or equal to] y [less than or equal to] 0.52). N-rich BCxNy grown at 275-400 °C showed that lower deposition temperatures resulted in improved electrical characteristics, including decreased hysteresis, lower VFB shift, lower leakage current, and less C-V stretch-out. The electrical improvement is attributed to decreased bulk and interfacial defects in BCxNy deposited at lower temperatures. Even for the lowest growth temperature studied (275 °C), BCxNy-passivated Ge(100) devices had considerable hysteresis and electrical characteristics worsened after a post-metallization anneal. BCxNy-passivated Si(100) devices outperformed similar Ge(100) devices, likely due to the higher interface state densities at the BCxNy-Ge(100) interface associated with the higher relative inertness of Ge(100) to thermal nitridation.en
dc.format.mediumelectronicen
dc.language.isoengen
dc.rightsCopyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works.en
dc.subject.lcshChemical reactionsen
dc.subject.lcshBoron nitride--Synthesisen
dc.subject.lcshThin films--Growthen
dc.subject.lcshGermaniumen
dc.titleChemical vapor deposition of boron carbo-nitride as a potential passivation layer for germanium surfacesen
dc.description.departmentChemical Engineeringen
thesis.degree.departmentChemical Engineeringen
thesis.degree.disciplineChemical Engineeringen
thesis.degree.grantorThe University of Texas at Austinen
thesis.degree.levelDoctoralen
thesis.degree.nameDoctor of Philosophyen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record