TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A variational grid optimization method based on a local cell quality metric

    Thumbnail
    View/Open
    branetsl64407.pdf (16.70Mb)
    Date
    2005
    Author
    Branets, Larisa Vladimirovna
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    Computational grid optimization, correction, improvement and remeshing techniques have become increasingly important as the application problem and domain complexity in creases. It is well recognized that distorted elements may degrade accuracy of finite element and finite volume simulations or cause them to fail. Hence, automatically generated grids containing millions of cells, created to fit a domain with complex geometry and adapt to features of different scales, often require correction before they can be effectively used for a numerical simulation. In this work a new variational grid smoothing formulation is devel oped and an extensive study of its mathematical properties, applicability and limitations is performed. The approach is based on a local cell quality metric, which is introduced as a function of the Jacobian matrix of the fundamental map from the reference cell. The math ematical properties of the local quality measure are analyzed and new theoretical results are proved. The grid improvement strategy is formulated as an optimization problem and a modified Newton scheme is used in the optimization algorithm which is implemented in a new software package. The effectiveness of the algorithm is tested on several representative v grids and for different transport application problems. The resulting methodology is applicable to general unstructured hybrid meshes in 2 and 3 dimensions. It overcomes several difficulties encountered by other smoothing algo rithms, such as effects of changing valence (number of cells sharing the same node). The formulation includes extensions to unfolding, adaptive redistribution, treatment of tangen tially “sliding” boundary nodes and hanging nodes, as well as elements with curved edges or surfaces, commonly used to provide better fit of domain boundaries or interfaces. The above techniques are applied to a set of mathematically representative prob lems including problems of geometric design as well as transport processes with the aim of studying the effect of the smoothing approach on the solvability and accuracy. Both 2D and 3D test problems are considered, including a moving mesh Lagrangian formulation for a fluid interface problem, non-Newtonian blood flow in curved branched pipes and a brain mapping/deformation problem. The associated numerical simulations are made on both serial and parallel PC cluster systems.
    Department
    Computational Science, Engineering, and Mathematics
     
    Computational and Applied Mathematics
     
    Description
    text
    URI
    http://hdl.handle.net/2152/1827
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin