Show simple item record

dc.contributor.advisorAgarwala, Seemaen
dc.creatorFogel, Jennifer Lynn, 1973-en
dc.date.accessioned2012-10-08T19:28:30Zen
dc.date.available2012-10-08T19:28:30Zen
dc.date.issued2008-12en
dc.identifier.urihttp://hdl.handle.net/2152/18220en
dc.descriptiontexten
dc.description.abstractDuring development of the nervous system, signals from specialized organizing centers generate distinct cell types. The signaling molecule, Sonic Hedgehog (SHH) is expressed by the floor plate (FP) and is sufficient to specify the ventral midbrain pattern. In the spinal cord, Bone Morphogenetic Proteins (BMPs) expressed in the roof plate (RP) specify dorsal cell-fates. The attenuation of BMP signaling is required for SHHmediated patterning of the ventral hindbrain and spinal cord, while BMP signaling is required in conjunction with SHH for ventral forebrain patterning. This thesis will focus on the function of SHH and BMPs in the midbrain by examining the molecules ability to pattern and regulate development. Midbrains of Shh[superscript -/-] mice were examined. Some ventral cell fates are specified in the Shh[superscript -/-] mouse in a Ptc1 and Gli1 independent manner. Ventral midbrain induction was observed to be Hh-independent by the existence of a Pax7-negative ventral midbrain territory before embryonic day 9. Interestingly, dorsal markers are not uniformly altered and increased cell death was seen in Shh[superscript -/-] dorsal midbrains. These results suggest specific regulation of dorsal patterning by Shh, rather than a simple deregulation. Several BMPs and their antagonists are expressed in a spatial and temporal manner in the midbrain. Expression of BMPs is seen in the RP, and rostral FP (rFP), which also expresses SHH. BMP signaling was manipulated using in vivo electroporation. NOGGIN misexpression resulted in a loss of RP and a reduction of dorsal cell-fates that was preceded by cell-shape changes, delamination of cells into the lumen and their elimination. This was accompanied by a reduction and alteration of midbrain size and shape. BMP blockade changed N-Cadherin distribution and perturbed pseudostratified morphology of the neurepithelium. Ventrally, BMP blockade resulted in a decrease of proliferation, while increasing differentiation, Notch signaling molecules at the rFP and medial FP markers. However ventral midbrain cell-fates were correctly specified. Notch-Delta signaling was examined in the Mib[superscript -/-] mouse. Different regulation of cell-fates was observed in the midbrain and spinal cord. Mib[superscript -/-] midbrains lacked a mature lateral FP, however ventral cell-fates are specified. Mib[superscript -/-] spinal cords lose Shh expression and several ventral cell-fates.en
dc.format.mediumelectronicen
dc.language.isoengen
dc.rightsCopyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works.en
dc.subject.lcshCellular signal transductionen
dc.subject.lcshVertebrates--Embryologyen
dc.subject.lcshBone morphogenetic proteinsen
dc.subject.lcshMesencephalonen
dc.titleThe role of sonic hedgehog and bone morphogenetic proteins in the development of the vertebrate midbrainen
dc.description.departmentNeuroscienceen
thesis.degree.departmentNeuroscienceen
thesis.degree.disciplineNeuroscienceen
thesis.degree.grantorThe University of Texas at Austinen
thesis.degree.levelDoctoralen
thesis.degree.nameDoctor of Philosophyen


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record