• Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Magnetic field enhancement of Coulomb blockade conductance oscillations in metal-metal oxide double barrier tunnel devices fabricated using atomic force microscope nanolithography

    Icon
    View/Open
    wiemerij54899.pdf (3.565Mb)
    Date
    2005
    Author
    Wiemeri, Jeffrey Charles
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    Magnetic field enhancement of Coulomb blockade conductance oscillations in metal oxide double barrier tunnel devices fabricated using atomic force microscope nanolithography is reported for the first time. Anodic oxidation by this method was accomplished on lithographically patterned Ti and Ni device layers. This is the first time Ni has been reported to be oxidized via scanning probe lithography. Magnetoresistance measurements were taken on selected devices in a Hall effect cryogenic system where tunneling conductance behavior was observed at 1.8, 10, 25, and 50 K in the Ti devices and 150 K in the Ni devices. Coulomb blockade conductance features were observed at vii 1.8, 10 and 50 K in the Ti devices and 10 and 25 K in the Ni devices. Applying a 9T magnetic field enhanced the conductance oscillations and clarified the Coulomb staircase apparent in the I-V curves for both devices. From theoretical fits of the experimental conductance behavior for the Ti devices, this is attributed to a suppression of cotunneling currents in the device. Additionally, in multiple Ti devices, a zero-bias anomaly peak was observed at ~ 2 K and is attributed to contaminant particles in the metal oxide barrier creating a localized magnetic moment in the junction leading to spin-flip and s-d exchange scattering assisted tunneling according to the Anderson-Appelbaum model. This is the first time these zero-bias anomalies have been observed and reported in planar tunnel junctions.
    Department
    Physics
    Description
    text
    URI
    http://hdl.handle.net/2152/1807
    Collections
    • UT Electronic Theses and Dissertations
    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentThis CollectionDate IssuedAuthorsTitlesSubjectsDepartment

    My Account

    Login

    Information

    AboutContactPoliciesGetting StartedGlossaryHelpFAQs

    Statistics

    View Usage Statistics
    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin