TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Autonomous sensor and action model learning for mobile robots

    Thumbnail
    View/Open
    strongerd.pdf (767.8Kb)
    Date
    2008-08
    Author
    Stronger, Daniel Adam
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    Autonomous mobile robots have the potential to be extremely beneficial to society due to their ability to perform tasks that are difficult or dangerous for humans. These robots will necessarily interact with their environment through the two fundamental processes of acting and sensing. Robots learn about the state of the world around them through their sensations, and they influence that state through their actions. However, in order to interact with their environment effectively, these robots must have accurate models of their sensors and actions: knowledge of what their sensations say about the state of the world and how their actions affect that state. A mobile robot’s action and sensor models are typically tuned manually, a brittle and laborious process. The robot’s actions and sensors may change either over time from wear or because of a novel environment’s terrain or lighting. It is therefore valuable for the robot to be able to autonomously learn these models. This dissertation presents a methodology that enables mobile robots to learn their action and sensor models starting without an accurate estimate of either model. This methodology is instantiated in three robotic scenarios. First, an algorithm is presented that enables an autonomous agent to learn its action and sensor models in a class of one-dimensional settings. Experimental tests are performed on a four-legged robot, the Sony Aibo ERS-7, walking forward and backward at different speeds while facing a fixed landmark. Second, a probabilistically motivated model learning algorithm is presented that operates on the same robot walking in two dimensions with arbitrary combinations of forward, sideways, and turning velocities. Finally, an algorithm is presented to learn the action and sensor models of a very different mobile robot, an autonomous car.
    Department
    Computer Sciences
    Description
    text
    URI
    http://hdl.handle.net/2152/17798
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin