Show simple item record

dc.contributor.advisorDawson, Clinton N.en
dc.creatorSantillana, Mauricio, 1976-en
dc.date.accessioned2012-09-04T15:03:07Zen
dc.date.available2012-09-04T15:03:07Zen
dc.date.issued2008-08en
dc.identifier.urihttp://hdl.handle.net/2152/17749en
dc.descriptiontexten
dc.description.abstractIn this dissertation, the quantitative and qualitative aspects of modeling shallow water flow driven mainly by gravitational forces and dominated by shear stress, using an effective equation often referred to in the literature as the diffusive wave approximation of the shallow water equations (DSW) are presented. These flow conditions arise for example in overland flow and water flow in vegetated areas such as wetlands. The DSWequation arises in shallow water flow models when special assumptions are used to simplify the shallow water equations and contains as particular cases: the Porous Medium equation and the time evolution of the p-Laplacian. It has been successfully applied as a suitable model to simulate overland flow and water flow in vegetated areas such as wetlands; yet, no formal mathematical analysis has been carried out addressing, for example, conditions for which weak solutions may exist, and conditions for which a numerical scheme can be successful in approximating them. This thesis represents a first step in that direction. The outline of the thesis is as follows. First, a survey of relevant results coming from the studies of doubly nonlinear diffusion equations that can be applied to the DSWequation when topographic effects are ignored, is presented. Furthermore, an original proof of existence of weak solutions using constructive techniques that directly lead to the implementation of numerical algorithms to obtain approximate solutions is shown. Some regularity results about weak solutions are presented as well. Second, a numerical approach is proposed as a means to understand some properties of solutions to the DSW equation, when topographic effects are considered, and conditions for which the continuous and discontinuous Galerkin methods will succeed in approximating these weak solutions are established.en
dc.format.mediumelectronicen
dc.language.isoengen
dc.rightsCopyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works.en
dc.subject.lcshHydrodynamics--Mathematical modelsen
dc.subject.lcshDiffusion--Mathematical modelsen
dc.subject.lcshDifferential equations, Nonlinearen
dc.titleAnalysis and numerical simulation of the diffusive wave approximation of the shallow water equationsen
dc.description.departmentComputational Science, Engineering, and Mathematicsen
thesis.degree.departmentComputational Science, Engineering, and Mathematicsen
thesis.degree.disciplineComputational and Applied Mathematicsen
thesis.degree.grantorThe University of Texas at Austinen
thesis.degree.levelDoctoralen
thesis.degree.nameDoctor of Philosophyen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record