TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A background calibration technique and self testing method for the pipeline analog to digital converter

    Thumbnail
    View/Open
    yooj50446.pdf (1.942Mb)
    Date
    2004
    Author
    Yoo, Jae Ki
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    Analog to digital converters (ADCs) are the fundamental building blocks in highly integrated mixed-signal integrated circuits. Among several ADC architectures, the pipeline ADC is suitable for high sampling rate and high resolution, so it is widely used in many integrated applications such as, wireless transceivers, camcorders, portable video devices. In this dissertation, a new digital background calibration technique with two redundant stages is proposed. Due to the redundant stages, calibration cycles can be scheduled to the pipeline stages during normal operation. The basic building blocks are the same as the building blocks in a normal pipeline ADC and no extra design time is required for dedicated calibration ADCs or DACs. The technique can calibrate all the gain errors, offset errors and the non-linearity errors of the ADC except for the front-end S/H. When compared to the normal digital calibrated pipeline ADC, the digital hardware complexity is slightly increased. When compared to other background calibration techniques, it represents a compromise solution between with and without additional calibration converters. It is also suitable for converting high frequency input signals since there is nothing inherent causes in the algorithm that will degrade the performance for high input frequencies. A self-generated random signal based on the congruential mapping found in pipeline A/D converters is used as the test signal stimulus for histogram test. Almost no extra analog components are required for this random signal generation. The testing technique can be extended to in-field background verification if the converter is calibrated using skip-and-fill background calibration method.
    Department
    Electrical and Computer Engineering
    Description
    text
    URI
    http://hdl.handle.net/2152/1440
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin