TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • Conference Proceedings and Journals
    • International Solid Freeform Fabrication Symposium
    • 2022 International Solid Freeform Fabrication Symposium
    • View Item
    • Repository Home
    • Conference Proceedings and Journals
    • International Solid Freeform Fabrication Symposium
    • 2022 International Solid Freeform Fabrication Symposium
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Investigation of the Process Parameters and Geometry Dependent Shrinkage Behavior of Raster Lines in the Fused Deposition Modeling Process

    Thumbnail
    View/Open
    Investigation of the Process Parameters and Geomet.pdf (1.240Mb)
    Date
    2022
    Author
    Moritzer, E.
    Hecker, F.
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    Additive Manufacturing processes are able to generate components from raw material (filament, powder etc.) without the need of tools or conventional machining. One of the most common Additive Manufacturing processes is the Fused Deposition Modeling (FDM). Here, a thermoplastic polymer filament is fed into a heated nozzle where the filament is plasticized. The plasticized material is then deposited, layer-by-layer onto the building platform or the already existing component structure in a defined way. Thermoplastic polymers show a material specific shrinkage induced by the cooling process. The recurring heat input by depositing adjacent strands results in a complex cooling situation which contributes to the non-uniform shrinkage of the component. In the investigations, first, a Design of Experiments (DoE) is carried out to determine the influence of selected process parameters on the shrinkage behavior of the raster lines. Following, the geometrical deviations of simple geometries under consideration of different process parameters are determined and analyzed.
    Department
    Mechanical Engineering
    Subject
    raster lines
    URI
    https://hdl.handle.net/2152/117775
    http://dx.doi.org/10.26153/tsw/44654
    Collections
    • 2022 International Solid Freeform Fabrication Symposium

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin