TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Organic geochemistry of an oil and gas seep in northern Gulf of Mexico sediments

    Thumbnail
    View/Open
    Final pdf File (68.04Mb)
    XML Text File (104.9Kb)
    Date
    1984
    Author
    Anderson, Richard Kent
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    During an extensive geochemical and geophysical survey of the outer slope of the northwestern Gulf of Mexico nine piston cores were recovered which had visible liquid organic deposits. In three of the cores deposits were observed concentrated in oblique fracture planes. Other occurrences included large deposits as liquid veins and smaller disseminated pockets in gassy and non-gassy sediments. The benzene soluble material (bitumen) was extracted and chemically and isotopically characterized. Bitumen content ranged as high as 8.6 percent in sediment samples. Gas chromatographic analyses of silica gel fractions showed that both the saturated and aromatic hydrocarbon components are highly biodegraded. The δ¹³C values for the whole oil and fractions were between -26.2 and -26.7 per mil on the PDB scale which closely resembles other Gulf coast oils. The δD values of the oil averaged -104 per mil relative to SMOW. Carbonate nodules found in the oil-rich zones were ¹³C depleted, indicating oxidized organic matter to be the source of the inorganic carbon. Several cores contained natural gas in concentrations high enough to result in large expansion gaps under the reduced ambient pressure at sea level. Hydrocarbon gases from methane through pentanes were sampled in nine cores. Chemical composition and δ¹³C values for methane, ethane, propane, and butanes (-30.5 to -61.9, -28.5, -24.5, -25.7 per mil) indicated that the gas has a major petrogenic component. δD values for methane, ethane, propane and butanes were -172, -101, -104, -101 per mil. Compositional variability of C₂⁺ gases among cores suggests the possible regional influence of gas hydrate formation. Compositional and isotopic variability of methane within and between cores does not conform to a two component mixing model (e.g. biogenic plus petrogenic methane). Instead, highly localized processes, possibly microbial, are implicated
    Department
    Chemistry
    Subject
    Organic geochemistry
    Oil seep
    Gas seep
    Gulf of Mexico
    Sediments
    Northwestern Gulf of Mexico
    Piston cores
    URI
    https://hdl.handle.net/2152/116763
    http://dx.doi.org/10.26153/tsw/43658
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin