Show simple item record

dc.contributor.advisorCampbell, Joeen
dc.creatorWang, Shuling, 1972-en
dc.date.accessioned2011-05-24T19:50:34Zen
dc.date.available2011-05-24T19:50:34Zen
dc.date.issued2002-08en
dc.identifier.urihttp://hdl.handle.net/2152/11325en
dc.descriptiontexten
dc.description.abstractAn avalanche photodiode (APD) is frequently the photodetector of choice in high-bit-rate, long-haul fiber optic communication systems due to its higher sensitivity, relative to a PIN photodiode, afforded by its internal gain. However, this can only be accomplished given that the multiplication noise is low. Impactionization-engineering (I2 E) is a novel approach that incorporates materials with different impact ionization threshold energies (Eth) into the multiplication region of APDs for low noise, high gain, and low dark current. A series of multiplication region structures with record-low multiplication noise were developed on both GaAs and InP substrates; an excess noise level comparable to silicon APDs was achieved on I2 E structures grown on GaAs. Unlike “superlattice” or “staircase” structures, the band gap continuities are not involved in the working mechanism of I2 E APDs. Monte Carlo simulation has revealed the spatial modulation effect of the impact ionization events in these heterostructure devices, which makes the ionization process more deterministic than in homojunctions, thus yielding lower noise. These low-noise I2 E multiplication region structures are promising in improving APD performance once they are implemented into SACM structures, with working wavelengths including 800-900nm, 1.3µm, and 1.55µm.
dc.format.mediumelectronicen
dc.language.isoengen
dc.rightsCopyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works.en
dc.subjectAvalanche photodiodesen
dc.subjectIonizationen
dc.titleLow noise avalanche photodiodes with an impact-ionization-engineered multiplication regionen
dc.description.departmentElectrical and Computer Engineeringen
thesis.degree.departmentElectrical and Computer Engineeringen
thesis.degree.disciplineElectrical and Computer Engineeringen
thesis.degree.grantorThe University of Texas at Austinen
thesis.degree.levelDoctoralen
thesis.degree.nameDoctor of Philosophyen
dc.rights.restrictionRestricteden


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record