• Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Deterministic approximations in stochastic programming with applications to a class of portfolio allocation problems

    Icon
    View/Open
    Restricted to EID users (613.2Kb)
    Date
    2001-08
    Author
    Dokov, Steftcho Pentchev
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    Optimal decision making under uncertainty involves modeling stochastic systems and developing solution methods for such models. The need to incorporate randomness in many practical decision-making problems is prompted by the uncertainties associated with today’s fast-paced technological environment. The complexity of the resulting models often exceeds the capabilities of commercially available optimization software, and special purpose solution techniques are required. Three main categories of solution approaches exist for attacking a particular stochastic programming instance. These are: large-scale mathematical programming algorithms, Monte-Carlo sampling-based techniques, and deterministically valid bound-based approximations. This research contributes to the last category. First, second-order lower and upper bounds are developed on the expectation of a convex function of a random vector. Here, a “second-order bound” means that only the first and second moments of the underlying random parameters are needed to compute the bound. The vector’s random components are assumed to be independent and to have bounded support contained in a hyper-rectangle. Applications to stochastic programming test problems and analysis of numerical performance are also presented. Second, assuming additional relevant moment information is available, higher-order upper bounds are developed. In this case the underlying random vector can have support contained in either a hyper-rectangle or a multidimensional simplex, and the random parameters can be either dependent or independent. The higher-order upper bounds form a decreasing sequence converging to the true expectation, and yielding convergence of the optimal decisions. Finally, applications of the higher-order upper bounds to a class of portfolio optimization problems are presented. Mean-variance and mean-varianceskewness efficient portfolio frontiers are considered in the context of a specific portfolio allocation model as well as in general and connected with applications of the higher-order upper bounds in utility theory
    Department
    Mechanical Engineering
    Description
    text
    Subject
    Stochastic programming
    Stochastic approximation
    Mathematical optimization
    URI
    http://hdl.handle.net/2152/10405
    Collections
    • UT Electronic Theses and Dissertations
    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentThis CollectionDate IssuedAuthorsTitlesSubjectsDepartment

    My Account

    Login

    Information

    AboutContactPoliciesGetting StartedGlossaryHelpFAQs

    Statistics

    View Usage Statistics
    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin