Browsing by Subject "winds, outflows"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Embedded Protostars In The Dust, Ice, And Gas In Time (DIGIT) Herschel Key Program: Continuum Seds, And An Inventory Of Characteristic Far-Infrared Lines From Pacs Spectroscopy(2013-06) Green, Joel D.; Evans, Neal J.; Jorgensen, Jes K.; Herczeg, Gregory J.; Kristensen, Lars E.; Lee, Jeong-Eun; Dionatos, Odysseas; Yildiz, Umut A.; Salyk, Colette; Meeus, Gwendolyn; Bouwman, Jeroen; Visser, Ruud; Bergin, Edwin A.; van Dishoeck, Ewine F.; Rascati, Michelle R.; Karska, Agata; van Kempen, Tim A.; Dunham, Michael M.; Lindberg, Johan E.; Fedele, Davide; Green, Joel D.; Evans, Neal J.; Rascati, Michelle R.We present 50-210 mu m spectral scans of 30 Class 0/I protostellar sources, obtained with Herschel-PACS, and 0.5-1000 mu m spectral energy distributions, as part of the Dust, Ice, and Gas in Time Key Program. Some sources exhibit up to 75 H2O lines ranging in excitation energy from 100 to 2000 K, 12 transitions of OH, and CO rotational lines ranging from J = 14 -> 13 up to J = 40 -> 39. [O I] is detected in all but one source in the entire sample; among the sources with detectable [O I] are two very low luminosity objects. The mean 63/145 mu m [O I] flux ratio is 17.2 +/- 9.2. The [O I] 63 mu m line correlates with L-bol, but not with the time-averaged outflow rate derived from low-J CO maps. [C II] emission is in general not local to the source. The sample L-bol increased by 1.25 (1.06) and T-bol decreased to 0.96 (0.96) of mean (median) values with the inclusion of the Herschel data. Most CO rotational diagrams are characterized by two optically thin components (< N > = ( 0.70 +/- 1.12) x 10(49) total particles). N-CO correlates strongly with L-bol, but neither T-rot nor N-CO(warm)/N-CO(hot) correlates with L-bol, suggesting that the total excited gas is related to the current source luminosity, but that the excitation is primarily determined by the physics of the interaction (e.g., UV-heating/shocks). Rotational temperatures for H2O (< T-rot > = 194 +/- 85 K) and OH (< T-rot > = 183 +/- 117 K) are generally lower than for CO, and much of the scatter in the observations about the best fit is attributed to differences in excitation conditions and optical depths among the detected lines.Item Outflows From Evolved Stars: The Rapidly Changing Fingers Of CRL 618(2013-07) Balick, Bruce; Huarte-Espinosa, Martin; Frank, Adam; Gomez, Thomas; Alcolea, Javier; Corradi, Romano L. M.; Vinkovic, Dejan; Frank, Adam; Gomez, ThomasOur ultimate goal is to probe the nature of the collimator of the outflows in the pre-planetary nebula CRL 618. CRL 618 is uniquely suited for this purpose owing to its multiple, bright, and carefully studied finger-shaped outflows east and west of its nucleus. We compare new Hubble Space Telescope images to images in the same filters observed as much as 11 yr ago to uncover large proper motions and surface brightness changes in its multiple finger-shaped outflows. The expansion age of the ensemble of fingers is close to 100 yr. We find strong brightness variations at the fingertips during the past decade. Deep IR images reveal a multiple ring-like structure of the surrounding medium into which the outflows propagate and interact. Tightly constrained three-dimensional hydrodynamic models link the properties of the fingers to their possible formation histories. We incorporate previously published complementary information to discern whether each of the fingers of CRL 618 are the results of steady, collimated outflows or a brief ejection event that launched a set of bullets about a century ago. Finally, we argue on various physical grounds that fingers of CRL 618 are likely to be the result of a spray of clumps ejected at the nucleus of CRL 618 since any mechanism that form a sustained set of unaligned jets is unprecedented.