Browsing by Subject "treatment effects"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item A Copula-Based Approach to Accommodate Residential Self-Selection Effects in Travel Behavior Modeling(Elsevier, 2009) Bhat, Chandra R.; Eluru, NaveenThe dominant approach in the literature to dealing with sample selection is to assume a bivariate normality assumption directly on the error terms, or on transformed error terms, in the discrete and continuous equations. Such an assumption can be restrictive and inappropriate, since the implication is a linear and symmetrical dependency structure between the error terms. In this paper, we introduce and apply a flexible approach to sample selection in the context of built environment effects on travel behavior. The approach is based on the concept of a copula, which is a multivariate functional form for the joint distribution of random variables derived purely from pre-specified parametric marginal distributions of each random variable. The copula concept has been recognized in the statistics field for several decades now, but it is only recently that it has been explicitly recognized and employed in the econometrics field. The copula-based approach retains a parametric specification for the bivariate dependency, but allows testing of several parametric structures to characterize the dependency. The empirical context in the current paper is a model of residential neighborhood choice and daily household vehicle miles of travel (VMT), using the 2000 San Francisco Bay Area Household Travel Survey (BATS). The sample selection hypothesis is that households select their residence locations based on their travel needs, which implies that observed VMT differences between households residing in neo-urbanist and conventional neighborhoods cannot be attributed entirely to the built environment variations between the two neighborhoods types. The results indicate that, in the empirical context of the current study, the VMT differences between households in different neighborhood types may be attributed to both built environment effects and residential self-selection effects. As importantly, the study indicates that use of a traditional Gaussian bivariate distribution to characterize the relationship in errors between residential choice and VMT can lead to misleading implications about built environment effects.Item A Joint Count-Continuous Model of Travel Behavior with Selection Based on a Multinomial Probit Residential Density Choice Model(2013-07) Bhat, Chandra R.; Astroza, Sebastian; Sidharthan, Raghuprasad; Jobair Bin Alam, Mohammad; Khushefati, Waleed H.This paper formulates a multidimensional choice model system that is capable of handling multiple nominal variables, multiple count dependent variables, and multiple continuous dependent variables. The system takes the form of a treatment-outcome selection system with multiple treatments and multiple outcome variables. The Maximum Approximate Composite Marginal Likelihood (MACML) approach is proposed in estimation, and a simulation experiment is undertaken to evaluate the ability of the MACML method to recover the model parameters in such integrated systems. These experiments show that our estimation approach recovers the underlying parameters very well and is efficient from an econometric perspective. The parametric model system proposed in the paper is applied to an analysis of household-level decisions on residential location, motorized vehicle ownership, the number of daily motorized tours, the number of daily non-motorized tours, and the average distance for the motorized tours. The empirical analysis uses the NHTS 2009 data from the San Francisco Bay area. Model estimation results show that the choice dimensions considered in this paper are inter-related, both through direct observed structural relationships and through correlations across unobserved factors (error terms) affecting multiple choice dimensions. The significant presence of self-selection effects (endogeneity) suggests that modeling the various choice processes in an independent sequence of models is not reflective of the true relationships that exist across these choice dimensions, as also reinforced through the computation of treatment effects in the paper.