Browsing by Subject "stellar-systems"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item An Explanation For The Observed Weak Size Evolution Of Disk Galaxies(2008-01) Somerville, Rachel S.; Barden, Marco; Rix, Hans-Walter; Bell, Eric F.; Beckwith, Steven V. W.; Borch, Andrea; Caldwell, John A. R.; Haussler, Boris; Heymans, Catherine; Jahnke, Knud; Jogee, Shardha; McIntosh, Daniel H.; Meisenheimer, Klaus; Peng, Chen Y.; Sanchez, Sebastian F.; Wisotzki, Lutz; Wolf, Christian; Caldwell, John A. R.Surveys of distant galaxies with the Hubble Space Telescope and from the ground have shown that there is only mild evolution in the relationship between radial size and stellar mass for galactic disks from z similar to 1 to the present day. Using a sample of nearby disk-dominated galaxies from the Sloan Digital Sky Survey (SDSS) and high-redshift data from the GEMS (Galaxy Evolution from Morphology and SEDs) survey, we investigate whether this result is consistent with theoretical expectations within the hierarchical paradigm of structure formation. The relationship between virial radius and mass for dark matter halos in the Lambda CDM model evolves by about a factor of 2 over this interval. However, N-body simulations have shown that halos of a given mass have less centrally concentrated mass profiles at high redshift. When we compute the expected disk size-stellar mass distribution, accounting for this evolution in the internal structure of dark matter halos and the adiabatic contraction of the dark matter by the self-gravity of the collapsing baryons, we find that the predicted evolution in the mean size at fixed stellar mass since z similar to 1 is about 15%-20%, in good agreement with the observational constraints from GEMS. At redshift z similar to 2, the model predicts that disks at fixed stellar mass were on average only 60% as large as they are today. Similarly, we predict that the rotation velocity at a given stellar mass (essentially the zero point of the Tully-Fisher relation) is only about 10% larger at z similar to 1 (20% at z similar to 2) than at the present day.Item Galaxy Kinematics With Virus-P: The Dark Matter Halo Of M87(2011-03) Murphy, Jeremy D.; Gebhardt, Karl; Adams, Joshua J.; Murphy, Jeremy D.; Gebhardt, Karl; Adams, Joshua J.We present two-dimensional stellar kinematics of M87 out to R = 238 '' taken with the integral field spectrograph VIRUS-P. We run a large set of axisymmetric, orbit-based dynamical models and find clear evidence for a massive dark matter halo. While a logarithmic parameterization for the dark matter halo is preferred, we do not constrain the dark matter scale radius for a Navarro-Frenk-White (NFW) profile and therefore cannot rule it out. Our best-fit logarithmic models return an enclosed dark matter fraction of 17.2(-5.0)(+5.0)% within one effective radius (R-e congruent to 100 ''), rising to 49.4(-8.8)(+7.2)% within 2 R-e. Existing SAURON data (R <= 13 ''), and globular cluster (GC) kinematic data covering 145 '' <= R <= 554 '' complete the kinematic coverage to R = 47 kpc (similar to 5R(e)). At this radial distance, the logarithmic dark halo comprises 85.3(-2.4)(+2.5)% of the total enclosed mass of 5.7(-0.9)(+1.3) x 10(12) M-circle dot making M87 one of the most massive galaxies in the local universe. Our best-fit logarithmic dynamical models return a stellar mass-to-light ratio (M/L) of 9.1(-0.2)(+0.2) (V band), a dark halo circular velocity of 800(-25)(+75) km s(-1), and a dark halo scale radius of 36(-3)(+7) kpc. The stellar M/L, assuming an NFW dark halo, is well constrained to 8.20(-0.10)(+0.05) (V band). The stars in M87 are found to be radially anisotropic out to R congruent to 0.5 R-e, then isotropic or slightly tangentially anisotropic to our last stellar data point at R = 2.4 R-e where the anisotropy of the stars and GCs are in excellent agreement. The GCs then become radially anisotropic in the last two modeling bins at R = 3.4 R-e and R = 4.8 R-e. As one of the most massive galaxies in the local universe, constraints on both the mass distribution of M87 and anisotropy of its kinematic components strongly inform our theories of early-type galaxy formation and evolution in dense environments.