Browsing by Subject "shrinkage correlation coefficient"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Genome-scale cluster analysis of replicated microarrays using shrinkage correlation coefficient(BMC Bioinformatics, 2008-06-18) Yao, Jianchao; Chang, Chunqi; Salmi, Mari L.; Hung, Yeung Sam; Loraine, Ann; Roux, Stanley J.Background: Currently, clustering with some form of correlation coefficient as the gene similarity metric has become a popular method for profiling genomic data. The Pearson correlation coefficient and the standard deviation (SD)-weighted correlation coefficient are the two most widely-used correlations as the similarity metrics in clustering microarray data. However, these two correlations are not optimal for analyzing replicated microarray data generated by most laboratories. An effective correlation coefficient is needed to provide statistically sufficient analysis of replicated microarray data. -- Results: In this study, we describe a novel correlation coefficient, shrinkage correlation coefficient (SCC), that fully exploits the similarity between the replicated microarray experimental samples. The methodology considers both the number of replicates and the variance within each experimental group in clustering expression data, and provides a robust statistical estimation of the error of replicated microarray data. The value of SCC is revealed by its comparison with two other correlation coefficients that are currently the most widely-used (Pearson correlation coefficient and SD-weighted correlation coefficient) using statistical measures on both synthetic expression data as well as real gene expression data from Saccharomyces cerevisiae. Two leading clustering methods, hierarchical and k-means clustering were applied for the comparison. The comparison indicated that using SCC achieves better clustering performance. Applying SCC-based hierarchical clustering to the replicated microarray data obtained from germinating spores of the fern Ceratopteris richardii, we discovered two clusters of genes with shared expression patterns during spore germination. Functional analysis suggested that some of the genetic mechanisms that control germination in such diverse plant lineages as mosses and angiosperms are also conserved among ferns. -- Conclusion: This study shows that SCC is an alternative to the Pearson correlation coefficient and the SD-weighted correlation coefficient, and is particularly useful for clustering replicated microarray data. This computational approach should be generally useful for proteomic data or other high-throughput analysis methodology.Item Integrative analysis of high-throughput biological data: shrinkage correlation coefficient and comparative expression analysis(2009-12) Yao, Jianchao; Roux, Stanley J.; Chen, Zengjian J.; Markey, Mia K.; Miranker, Daniel P.; Fu, BoThe focus for this research is to develop and apply statistical methods to analyze and interpret high-throughput biological data. We developed a novel correlation coefficient, shrinkage correlation coefficient (SCC), that fully exploits the similarity between the replicated microarray experimental samples. The methodology considers both the number of replicates and the variance within each experimental group in clustering expression data, and provides a robust statistical estimation of the error of replicated microarray data. Applying SCC-based hierarchical clustering to the replicated microarray data obtained from germinating spores of the fern Ceratopteris richardii, we discovered two clusters of genes with shared expression patterns during spore germination. This computational approach is not only applicable to DNA microarray analysis but is also applicable to proteomics data or any other high-throughput analysis methodology. The suppression of APY1 and APY2 in mutants expressing an inducible RNAi system resulted in plants with a dwarf phenotype and disrupted auxin distribution, and we used these mutants to discover what genes changed expression during growth suppression. We evaluated the gene expression changes of apyrase-suppressed RNAi mutants that had been grown in the light and in the darkness, using the NimbleGen Arabidopsis thaliana 4-Plex microarray, respectively. We compared the two sets of large-scale expression data and identified genes whose expression significantly changed after apyrase suppression in light and darkness, respectively. Our results allowed us to highlight some of the genes likely to play major roles in mediating the growth changes that happen when plants drastically reduce their production of APY1 and APY2, some more associated with growth promotion and others, such as stress-induced genes, more associated with growth inhibition. There is a strong rationale for ranking all these genes as prime candidates for mediating the inhibitory growth effects of suppressing apyrase expression, thus the NimbleGen data will serve as a catalyst and valuable guide to the subsequent physiological and molecular experiments that will be needed to clarify the network of gene expression changes that accompany growth inhibition.