Browsing by Subject "secular evolution"
Now showing 1 - 9 of 9
- Results Per Page
- Sort Options
Item Barred Galaxies In The Abell 901/2 Supercluster With Stages(2009-06) Marinova, Irina; Jogee, Shardha; Heiderman, Amanda; Barazza, Fabio D.; Gray, M. E.; Barden, Marco; Wolf, Christian; Peng, Chen Y.; Bacon, David; Balogh, Michael; Bell, Eric F.; Bohm, Asmus; Caldwell, John A. R.; Haussler, Boris; Heymans, Catherine; Jahnke, Knud; van Kampen, Eelco; Lane, Kyle; McIntosh, Daniel H.; Meisenheimer, Klaus; Sanchez, Sebastian F.; Somerville, Rachel; Taylor, Andy; Wisotzki, Lutz; Zheng, Xianzhong; Marinova, Irina; Jogee, Shardha; Heiderman, AmandaWe present a study of bar and host disk evolution in a dense cluster environment, based on a sample of similar to 800 bright (M-V <= -18) galaxies in the Abell 901/2 supercluster at z similar to 0.165. We use Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) F606W imaging from the STAGES survey, and data from Spitzer, XMM-Newton, and COMBO-17. We identify and characterize bars through ellipse-fitting, and other morphological features through visual classification. We find the following results. (1) To define the optical fraction of barred disk galaxies, we explore three commonly used methods for selecting disk galaxies. We find 625, 485, and 353 disk galaxies, respectively, via visual classification, a single component Sersic cut (n <= 2.5), and a blue-cloud cut. In cluster environments, the latter two methods suffer from serious limitations, and miss 31% and 51%, respectively, of visually identified disks, particularly the many red, bulge-dominated disk galaxies in clusters. (2) For moderately inclined disks, the three methods of disk selection, however, yield a similar global optical bar fraction (f(bar-opt)) of 34%(+10%)(-3%) (115/340), 31%(+10%)(-3%) (58/189), and 30%(+10%)(-3%) (72/241), respectively. (3) We explore f(bar-opt) as a function of host galaxy properties and find that it rises in brighter galaxies and those which appear to have no significant bulge component. Within a given absolute magnitude bin, f(bar-opt) is higher in visually selected disk galaxies that have no bulge as opposed to those with bulges. Conversely, for a given visual morphological class, f(bar-opt) rises at higher luminosities. Both results are similar to trends found in the field. (4) For bright early-types, as well as faint late-type systems with no evident bulge, the optical bar fraction in the Abell 901/2 clusters is comparable within a factor of 1.1-1.4 to that of field galaxies at lower redshifts (z < 0.04). (5) Between the core and the virial radius of the cluster (R similar to 0.25-1.2 Mpc) at intermediate environmental densities (log(Sigma(10)) similar to 1.7-2.3), the optical bar fraction does not appear to depend strongly on the local environment density tracers (kappa, Sigma(10), and intracluster medium (ICM) density), and varies at most by a factor of similar to 1.3. Inside the cluster core, we are limited by number statistics, projection effects, and different trends from different indicators, but overall f(bar-opt) does not show evidence for a variation larger than a factor of 1.5. We discuss the implications of our results for the evolution of bars and disks in dense environments.Item Bars In Disk-Dominated And Bulge-Dominated Galaxies At Z Similar To 0: New Insights From Similar To 3600 SDSS Galaxies(2008-03) Barazza, Fabio D.; Jogee, Shardha; Marinova, Irina; Barazza, Fabio D.; Jogee, Shardha; Marinova, IrinaWe present a study of large-scale bars in the local universe, based on a large sample of 3692 galaxies, with 18.5 <= M(g) < -22.0 mag and redshift 0.01 <= z < 0.03, drawn from the Sloan Digitized Sky Survey. Our sample includes many galaxies that are disk-dominated and of late Hubble types. Both color cuts and Se e rsic cuts yield a similar sample of similar to 2000 disk galaxies. We characterize bars and disks by ellipse-fitting r-band images and applying quantitative criteria. After excluding highly inclined (60 degrees) systems, we find the following results. (1) The optical r-band fraction (f(opt-r)) of barred galaxies, when averaged over the whole sample, is similar to 48%-52%. (2) When galaxies are separated according to half light radius (r(e)), or normalized r(e)/R(24), which is a measure of the bulge-to-disk (B/D) ratio, a remarkable result is seen: f(opt-r) rises sharply, from similar to 40% in galaxies that have small r(e)/R(24) and visually appear to host prominent bulges, to similar to 70% for galaxies that have large r(e)/R(24) and appear disk-dominated. (3) For galaxies with bluer colors, f(opt-r) rises significantly (by similar to 30%). A weaker rise (by similar to 15%-20%) is seen for lower luminosities or lower masses. (4) While hierarchical Lambda CDM models of galaxy evolution models fail to produce galaxies without classical bulges, our study finds that similar to 20% of disk galaxies appear to be "quasi-bulgeless.'' (5) We outline how the effect of a decreasing resolution and a rising obscuration of bars by gas and dust over z = 0.2-1.0 can cause a significant artificial loss of bars, and an artificial reduction in the optical bar fraction over z = 0.2-1.0.Item Bulges Of Nearby Galaxies With Spitzer: Scaling Relations In Pseudobulges And Classical Bulges(2010-06) Fisher, David B.; Drory, Niv; Fisher, David B.We investigate scaling relations of bulges using bulge-disk decompositions at 3.6 mu m and present bulge classifications for 173 E-Sd galaxies within 20 Mpc. Pseudobulges and classical bulges are identified using Sersic index, Hubble Space Telescope morphology, and star formation activity ( traced by 8 mu m emission). In the near-IR pseudobulges have n(b) < 2 and classical bulges have n(b) > 2, as found in the optical. Sersic index and morphology are essentially equivalent properties for bulge classification purposes. We confirm, using a much more robust sample, that the Sersic index of pseudobulges is uncorrelated with other bulge structural properties, unlike for classical bulges and elliptical galaxies. Also, the half-light radius of pseudobulges is not correlated with any other bulge property. We also find a new correlation between surface brightness and pseudobulge luminosity; pseudobulges become more luminous as they become more dense. Classical bulges follow the well-known scaling relations between surface brightness, luminosity, and half-light radius that are established by elliptical galaxies. We show that those pseudobulges (as indicated by Sersic index and nuclear morphology) that have low specific star formation rates are very similar to models of galaxies in which both a pseudobulge and classical bulge exist. Therefore, pseudobulge identification that relies only on structural indicators is incomplete. Our results, especially those on scaling relations, imply that pseudobulges are very different types of objects than elliptical galaxies.Item Bulges Of Nearby Galaxies With Spitzer: The Growth Of Pseudobulges In Disk Galaxies And Its Connection To Outer Disks(2009-05) Fisher, David B.; Drory, Niv; Fabricius, Maximilian H.; Fisher, David B.We study star formation rates (SFRs) and stellar masses in bulges of nearby disk galaxies. For this we construct a new SFR indicator that linearly combines data from the Spitzer Space Telescope and the Galaxy Evolution Explorer. All bulges are found to be forming stars irrespective of bulge type (pseudobulge or classical bulge). At present-day SFR the median pseudobulge could have grown the present-day stellar mass in 8 Gyr. Classical bulges have the lowest specific SFR implying a growth times that are longer than a Hubble time, and thus the present-day SFR does not likely play a major role in the evolution of classical bulges. In almost all galaxies in our sample the specific SFR (SFR per unit stellar mass) of the bulge is higher than that of the outer disk. This suggests that almost all galaxies are increasing their B/T through internal star formation. The SFR in pseudobulges correlates with their structure. More massive pseudobulges have higher SFR density, this is consistent with that stellar mass being formed by moderate, extended star formation. Bulges in late-type galaxies have similar SFRs as pseudobulges in intermediate-type galaxies, and are similar in radial size. However, they are deficient in mass; thus, they have much shorter growth times, similar to 2 Gyr. We identify a class of bulges that have nuclear morphology similar to pseudobulges, significantly lower specific SFR than pseudobulges, and are closer to classical bulges in structural parameter correlations. These are possibly composite objects, evolved pseudobulges or classical bulges experiencing transient, enhanced nuclear star formation. Our results are consistent with a scenario in which bulge growth via internal star formation is a natural, and near ubiquitous phenomenon in disk galaxies. Those galaxies with large classical bulges are not affected by the in situ bulge growth, likely because the majority of their stellar mass comes from some other phenomenon. Yet, those galaxies without a classical bulge, over long periods of extended star formation are able to growth a pseudobulge. Though cold accretion is not ruled out, for pseudobulge galaxies an addition of stellar mass from mergers or accretion is not required to explain the bulge mass. In this sense, galaxies with pseudobulges may very well be bulgeless (or "quasi-bulgeless") galaxies, and galaxies with classical bulges are galaxies in which both internal evolution and hierarchical merging are responsible for the bulge mass by fractions that vary from galaxy to galaxy.Item Frequency And Properties Of Bars In Cluster And Field Galaxies At Intermediate Redshifts(2009-04) Barazza, F. D.; Jablonka, P.; Desai, V.; Jogee, S.; Aragon-Salamanca, A.; De Lucia, G.; Saglia, R. P.; Halliday, C.; Poggianti, B. M.; Dalcanton, J. J.; Rudnick, G.; Milvang-Jensen, B.; Noll, S.; Simard, L.; Clowe, D. I.; Pello, R.; White, S. D. M.; Zaritsky, D.; Jogee, S.We present a study of large-scale bars in field and cluster environments out to redshifts of similar to 0.8 using a final sample of 945 moderately inclined disk galaxies drawn from the EDisCS project. We characterize bars and their host galaxies and look for relations between the presence of a bar and the properties of the underlying disk. We investigate whether the fraction and properties of bars in clusters are different from their counterparts in the field. The properties of bars and disks are determined by ellipse fits to the surface brightness distribution of the galaxies using HST/ACS images in the F814W filter. The bar identification is based on quantitative criteria after highly inclined (> 60 degrees) systems have been excluded. The total optical bar fraction in the redshift range z = 0.4-0.8 (median z = 0.60), averaged over the entire sample, is 25% (20% for strong bars). For the cluster and field subsamples, we measure bar fractions of 24% and 29%, respectively. We find that bars in clusters are on average longer than in the field and preferentially found close to the cluster center, where the bar fraction is somewhat higher (similar to 31%) than at larger distances (similar to 18%). These findings however rely on a relatively small subsample and might be affected by small number statistics. In agreement with local studies, we find that disk-dominated galaxies have a higher optical bar fraction (similar to 45%) than bulge-dominated galaxies (similar to 15%). This result is based on Hubble types and effective radii and does not change with redshift. The latter finding implies that bar formation or dissolution is strongly connected to the emergence of the morphological structure of a disk and is typically accompanied by a transition in the Hubble type. The question whether internal or external factors are more important for bar formation and evolution cannot be answered definitely. On the one hand, the bar fraction and properties of cluster and field samples of disk galaxies are quite similar, indicating that internal processes are crucial for bar formation. On the other hand, we find evidence that cluster centers are favorable locations for bars, which suggests that the internal processes responsible for bar growth are supported by the typical interactions taking place in such environments.Item The HST/ACS Coma Cluster Survey. VIII. Barred Disk Galaxies In The Core Of The Coma Cluster(2012-02) Marinova, Irina; Jogee, Shardha; Weinzirl, Tim; Erwin, Peter; Trentham, Neil; Ferguson, Henry C.; Hammer, Derek; den Brok, Mark; Graham, Alister W.; Carter, David; Balcells, Marc; Goudfrooij, Paul; Guzman, Rafael; Hoyos, Carlos; Mobasher, Bahram; Mouhcine, Mustapha; Peletier, Reynier F.; Peng, Eric W.; Kleijn, Gus V.; Marinova, Irina; Jogee, Shardha; Weinzirl, TimWe use high-resolution (similar to 0.'' 1) F814W Advanced Camera for Surveys (ACS) images from the Hubble Space Telescope ACS Treasury survey of the Coma cluster at z similar to 0.02 to study bars in massive disk galaxies (S0s), as well as low-mass dwarf galaxies in the core of the Coma cluster, the densest environment in the nearby universe. Our study helps to constrain the evolution of bars and disks in dense environments and provides a comparison point for studies in lower density environments and at higher redshifts. Our results are: (1) we characterize the fraction and properties of bars in a sample of 32 bright (M-V less than or similar to -18, M-* > 10(9.5) M-circle dot) S0 galaxies, which dominate the population of massive disk galaxies in the Coma core. We find that the measurement of a bar fraction among S0 galaxies must be handled with special care due to the difficulty in separating unbarred S0s from ellipticals, and the potential dilution of the bar signature by light from a relatively large, bright bulge. The results depend sensitively on the method used: the bar fraction for bright S0s in the Coma core is 50% +/- 11%, 65% +/- 11%, and 60% +/- 11% based on three methods of bar detection, namely, strict ellipse fit criteria, relaxed ellipse fit criteria, and visual classification. (2) We compare the S0 bar fraction across different environments (the Coma core, A901/902, and Virgo) adopting the critical step of using matched samples and matched methods in order to ensure robust comparisons. We find that the bar fraction among bright S0 galaxies does not show a statistically significant variation (within the error bars of +/- 11%) across environments which span two orders of magnitude in galaxy number density (n similar to 300-10,000 galaxies Mpc(-3)) and include rich and poor clusters, such as the core of Coma, the A901/902 cluster, and Virgo. We speculate that the bar fraction among S0s is not significantly enhanced in rich clusters compared to low-density environments for two reasons. First, S0s in rich clusters are less prone to bar instabilities as they are dynamically heated by harassment and are gas poor as a result of ram pressure stripping and accelerated star formation. Second, high-speed encounters in rich clusters may be less effective than slow, strong encounters in inducing bars. (3) We also take advantage of the high resolution of the ACS (similar to 50 pc) to analyze a sample of 333 faint (MV > -18) dwarf galaxies in the Coma core. Using visual inspection of unsharp-masked images, we find only 13 galaxies with bar and/or spiral structure. An additional eight galaxies show evidence for an inclined disk. The paucity of disk structures in Coma dwarfs suggests that either disks are not common in these galaxies or that any disks present are too hot to develop instabilities.Item NGC 4102: High-Resolution Infrared Observations Of A Nuclear Starburst Ring(2010-10) Beck, Sara C.; Lacy, John H.; Turner, Jean L.; Lacy, John H.The composite galaxy NGC 4102 hosts a LINER nucleus and a starburst. We mapped NGC 4102 in the 12.8 mu m line of [Ne II], using the echelon spectrometer TEXES on the NASA IRTF, to obtain a data cube with 1 ''.5 spatial, and 25 km s(-1) spectral, resolution. Combining near-infrared, radio, and the [Ne II] data shows that the extinction to the starburst is substantial, more than 2 mag at the K band, and that the neon abundance is less than half solar. We find that the star formation in the nuclear region is confined to a rotating ring or disk of 4 ''.3 (similar to 300 pc) diameter, inside the inner Lindblad resonance. This region is an intense concentration of mass, with a dynamical mass similar to 3 x 10(9) M(circle dot), and of star formation. The young stars in the ring produce the [Ne II] flux reported by Spitzer for the entire galaxy. The mysterious blue component of line emission detected in the near-infrared is also seen in [Ne II]; it is not a normal active galactic nucleus outflow.Item Observable Properties Of Double-Barred Galaxies In N-Body Simulations(2009-01) Shen, Juntai T.; Debattista, Victor P.; Shen, Juntai T.Although at least one quarter of early-type barred galaxies host secondary stellar bars embedded in their large-scale primary counterparts, the dynamics of such double-barred galaxies are still not well understood. Recently we reported success at simulating such systems in a repeatable way in collisionless systems. In order to further our understanding of double-barred galaxies, here we characterize the density and kinematics of the N-body simulations of these galaxies. This will facilitate comparison with observations and lead to a better understanding of the observed double-barred galaxies. We find the shape and size of our simulated secondary bars are quite reasonable compared to the observed ones. We demonstrate that an authentic decoupled secondary bar may produce only a weak twist of the kinematic minor axis in the stellar velocity field, due to the relatively large random motion of stars in the central region. We also find that the edge-on nuclear bars are probably not related to boxy peanut-shaped bulges which are most likely to be edge-on primary large-scale bars. Another kinematic feature often present in our double-barred models is a ring-like feature in the fourth-order Gauss-Hermite moment h(4) maps. Finally, we demonstrate that the non-rigid rotation of the secondary bar causes its pattern speed to not be derived with great accuracy using the Tremaine-Weinberg method. We also compare with observations of NGC 2950, a prototypical double-barred early-type galaxy, which suggest that the nuclear bar may be rotating in the opposite sense as the primary.Item The Structure Of Classical Bulges And Pseudobulges: The Link Between Pseudobulges And Sersic Index(2008-08) Fisher, David B.; Drory, Niv; Fisher, David B.In this paper, we study the properties of pseudobulges (bulges that appear similar to disk galaxies) and classical bulges (bulges which appear similar to E-type galaxies) in bulge-disk decompositions. We show that the distribution of bulge Sersic indices, (n)b, is bimodal, and this bimodality correlates with the morphology of the bulge. Pseudobulges have n(b) less than or similar to 2 and classical bulges have n(b) less than or similar to 2 with little to no overlap. Also, pseudobulges do not follow the correlations of Sersic index with structural parameters or the photometric projections of the fundamental plane in the same way that classical bulges and elliptical galaxies do. We find that pseudobulges are systematically flatter than classical bulges and thus more disk-like in both their morphology and shape. We do not find significant differences between different bulge morphologies which we are collectively calling pseudobulges (nuclear spirals, nuclear rings, nuclear bars, and nuclear patchiness); they appear to behave similarly in all parameter correlations. In the Sersic index, flattening, and bulge-to-total ratio, the distinction appears to be between classical bulges and pseudobulges, not between different pseudobulge morphologies. The Sersic index of the pseudobulges does not correlate with B/T, in contrast to classical bulges. Also, the half-light radius of the pseudobulge correlates with the scale length of the disk; this is not the case for classical bulges. The correlation of Sersic index and scale lengths with bulge morphology suggests that secular evolution is creating pseudobulges with low-Sersic index and that other processes (e. g., major mergers) are responsible for the higher Sersic index in classical bulges and elliptical galaxies.