Browsing by Subject "resolution imaging spectrometer"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Probing The Lower Mass Limit For Supernova Progenitors And The High-Mass End Of The Initial-Final Mass Relation From White Dwarfs In The Open Cluster M35 (NGC 2168)(2009-03) Williams, Kurtis A.; Bolte, Michael; Koester, Detlev; Williams, Kurtis A.We present a photometric and spectroscopic study of the white dwarf (WD) population of the populous, intermediate-age open cluster M35 (NGC 2168); this study expands upon our previous study of the WDs in this cluster. We spectroscopically confirm 14 WDs in the field of the cluster: 12 DAs, 1 hot DQ, and 1 db star. For each DA, we determine the WD mass and cooling age, from which we derive each star's progenitor mass. These data are then added to the empirical initial-final mass relation (IFMR), where the M35 WDs contribute significantly to the high-mass end of the relation. The resulting points are consistent with previously published linear fits to the IFMR, modulo moderate systematics introduced by the uncertainty in the star cluster age. Based on this cluster alone, the observational lower limit on the maximum mass of WD progenitors is found to be similar to 5.1M(circle dot) - 5.2M(circle dot) at the 95% confidence level; including data from other young open clusters raises this limit to as high as 7.1M(circle dot), depending on the cluster membership of three massive WDs and the core composition of the most massive WDs. We find that the apparent distance modulus and extinction derived solely from the cluster WDs ((m-M)(V) = 10.45 +/- 0.08 and E(B-V) = 0.185 +/- 0.010, respectively) is fully consistent with that derived from main-sequence fitting techniques. Four M35 WDs may be massive enough to have oxygen - neon cores; the assumed core composition does not significantly affect the empirical IFMR. Finally, the two non-DA WDs in M35 are photometrically consistent with cluster membership; further analysis is required to determine their memberships.