Browsing by Subject "radiative feedback"
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Item Accretion onto Intermediate-Mass Black Holes in Dense Protogalactic Clouds(2009-05) Milosavljevi?, Miloš; Couch, Sean M.; Bromm, Volker; Milosavljevi?, Miloš; Couch, Sean M.; Bromm, VolkerWe present the first results from two-dimensional simulations of radiatively efficient accretion of metal-free gas onto intermediate-mass black holes. We fix the shape of the spectral energy distribution of the radiation produced near the event horizon and study the structure of the irradiated low-angular-momentum accretion flow over 3 orders of magnitude in radius from the black hole, 10(14)-10(17) cm for a 100 M(circle dot) black hole. The luminosity of the central source is made to be proportional to the rate at which gas accretes across the inner boundary, which we set just inside the sonic radius. We find that photoionization heating and radiation pressure modify the structure of the flow. When the ambient gas density is 10(7) cm(-3), accretion is intermittent and on average reduced to 32% of the Eddington-limited rate, over 2 orders of magnitude below the "Bondi" rate evaluated ignoring radiation, in agreement with theoretical models. Even if the vicinity of the black hole is supplied with high-density gas, accretion is rendered inefficient through heating and radiation pressure.Item The Cosmic Near-Infrared Background. II. Fluctuations(2010-02) Fernandez, Elizabeth R.; Komatsu, Eiichiro; Iliev, Illian T.; Shapiro, Paul R.; Komatsu, Eiichiro; Shapiro, Paul R.The near-infrared background (NIRB) is one of a few methods that can be used to observe the redshifted light from early stars at a redshift of 6 and above, and thus it is imperative to understand the significance of any detection or nondetection of the NIRB. Fluctuations of the NIRB can provide information on the first structures, such as halos and their surrounding ionized regions in the intergalactic medium (IGM). We combine, for the first time, N-body simulations, radiative transfer code, and analytic calculations of luminosity of early structures to predict the angular power spectrum (C(l)) of fluctuations in the NIRB. We study in detail the effects of various assumptions about the stellar mass, the initial mass spectrum of stars, the metallicity, the star formation efficiency (f(*)), the escape fraction of ionizing photons (f(esc)), and the star formation timescale (t(SF)), on the amplitude as well as the shape of C(l). The power spectrum of NIRB fluctuations is maximized when f(*) is the largest (as C(l) proportional to f(*)(2))and f(esc) is the smallest (as more nebular emission is produced within halos). A significant uncertainty in the predicted amplitude of C(l) exists due to our lack of knowledge of t(SF) of these early populations of galaxies, which is equivalent to our lack of knowledge of the mass-to-light ratio of these sources. We do not see a turnover in the NIRB angular power spectrum of the halo contribution, which was claimed to exist in the literature, and explain this as the effect of high levels of nonlinear bias that was ignored in the previous calculations. This is partly due to our choice of the minimum mass of halos contributing to NIRB (similar to 2 x 10(9) M(circle dot)), and a smaller minimum mass, which has a smaller nonlinear bias, may still exhibit a turnover. Therefore, our results suggest that both the amplitude and shape of the NIRB power spectrum provide important information regarding the nature of sources contributing to the cosmic reionization. The angular power spectrum of the IGM, in most cases, is much smaller than the halo angular power spectrum, except when f(esc) is close to unity, t(SF) is longer, or the minimum redshift at which the star formation is occurring is high. In addition, low levels of the observed mean background intensity tend to rule out high values of f(*) greater than or similar to 0.2.Item The First Galaxies: Chemical Enrichment, Mixing, And Star Formation(2010-06) Greif, Thomas H.; Glover, Simon C. O.; Bromm, Volker; Klessen, Ralf S.; Bromm, VolkerUsing three-dimensional cosmological simulations, we study the assembly process of one of the first galaxies, with a total mass of similar to 10(8) M(circle dot), collapsing at z similar or equal to 10. Our main goal is to trace the transport of the heavy chemical elements produced and dispersed by a pair-instability supernova exploding in one of the minihalo progenitors. To this extent, we incorporate an efficient algorithm into our smoothed particle hydrodynamics code that approximately models turbulent mixing as a diffusion process. We study this mixing with and without the radiative feedback from Population III (Pop III) stars that subsequently form in neighboring minihalos. Our simulations allow us to constrain the initial conditions for second-generation star formation, within the first galaxy itself, and inside of minihalos that virialize after the supernova explosion. We find that most minihalos remain unscathed by ionizing radiation or the supernova remnant, while some are substantially photoheated and enriched to supercritical levels, likely resulting in the formation of low-mass Pop III or even Population II (Pop II) stars. At the center of the newly formed galaxy, similar to 10(5) M(circle dot) of cold, dense gas uniformly enriched to similar to 10(-3) Z(circle dot) is in a Stateof collapse, suggesting that a cluster of Pop II stars will form. The first galaxies, as may be detected by the James Webb Space Telescope, would therefore already contain stellar populations familiar from lower redshifts.Item Fragmentation And Evolution Of Molecular Clouds. II. The Effect Of Dust Heating(2010-02) Urban, Andrea; Martel, Hugo; Evans, Neal J.; Urban, Andrea; Evans, Neal J.We investigate the effect of heating by luminosity sources in a simulation of clustered star formation. Our heating method involves a simplified continuum radiative transfer method that calculates the dust temperature. The gas temperature is set by the dust temperature. We present the results of four simulations; two simulations assume an isothermal equation of Stateand the two other simulations include dust heating. We investigate two mass regimes, i. e., 84 M(circle dot) and 671 M(circle dot), using these two different energetics algorithms. The mass functions for the isothermal simulations and simulations that include dust heating are drastically different. In the isothermal simulation, we do not form any objects with masses above 1 M(circle dot). However, the simulation with dust heating, while missing some of the low-mass objects, forms high-mass objects (similar to 20 M(circle dot)) which have a distribution similar to the Salpeter initial mass function. The envelope density profiles around the stars formed in our simulation match observed values around isolated, low-mass star-forming cores. We find the accretion rates to be highly variable and, on average, increasing with final stellar mass. By including radiative feedback from stars in a cluster-scale simulation, we have determined that it is a very important effect which drastically affects the mass function and yields important insights into the formation of massive stars.Item Simulations On A Moving Mesh: The Clustered Formation Of Population III Protostars(2011-08) Greif, Thomas H.; Springel, Volker; White, Simon D. M.; Glover, Simon C. O.; Clark, Paul C.; Smith, Rowan J.; Klessen, Ralf S.; Bromm, Volker; Bromm, VolkerThe cosmic dark ages ended a few hundred million years after the big bang, when the first stars began to fill the universe with new light. It has generally been argued that these stars formed in isolation and were extremely massive-perhaps 100 times as massive as the Sun. In a recent study, Clark and collaborators showed that this picture requires revision. They demonstrated that the accretion disks that build up around Population III stars are strongly susceptible to fragmentation and that the first stars should therefore form in clusters rather than in isolation. We here use a series of high-resolution hydrodynamical simulations performed with the moving mesh code AREPO to follow up on this proposal and to study the influence of environmental parameters on the level of fragmentation. We model the collapse of five independent minihalos from cosmological initial conditions, through the runaway condensation of their central gas clouds, to the formation of the first protostar, and beyond for a further 1000 years. During this latter accretion phase, we represent the optically thick regions of protostars by sink particles. Gas accumulates rapidly in the circumstellar disk around the first protostar, fragmenting vigorously to produce a small group of protostars. After an initial burst, gravitational instability recurs periodically, forming additional protostars with masses ranging from similar to 0.1 to 10 M-circle dot. Although the shape, multiplicity, and normalization of the protostellar mass function depend on the details of the sink-particle algorithm, fragmentation into protostars with diverse masses occurs in all cases, confirming earlier reports of Population III stars forming in clusters. Depending on the efficiency of later accretion and merging, Population III stars may enter the main sequence in clusters and with much more diverse masses than are commonly assumed.Item The Source Density And Observability Of Pair-Instability Supernovae From The First Stars(2012-08) Hummel, Jacob A.; Pawlik, Andreas H.; Milosavljevic, Milos; Bromm, Volker; Hummel, Jacob A.; Pawlik, Andreas H.; Milosavljevic, Milos; Bromm, VolkerTheoretical models predict that some of the first stars ended their lives as extremely energetic pair-instability supernovae (PISNe). With energies approaching 10(53) erg, these supernovae are expected to be within the detection limits of the upcoming James Webb Space Telescope (JWST), allowing observational constraints to be placed on the properties of the first stars. We estimate the source density of PISNe using a semi-analytic halo mass function based approach, accounting for the effects of feedback from star formation on the PISN rate using cosmological simulations. We estimate an upper limit of similar to 0.2 PISNe per JWST field of view at any given time. Feedback can reduce this rate significantly, e. g., lowering it to as little as one PISN per 4000 JWST fields of view for the most pessimistic explosion models. We also find that the main obstacle to observing PISNe from the first stars is their scarcity, not their faintness; exposures longer than a few times 10(4) s will do little to increase the number of PISNe found. Given this, we suggest a mosaic style search strategy for detecting PISNe from the first stars. Even rather high-redshift PISNe are unlikely to be missed by moderate exposures, and a large number of pointings will be required to ensure a detection.Item Uncovering The Chemical Signature Of The First Stars In The Universe(2008-05) Karlsson, Torgny; Johnson, Jarrett L.; Bromm, Volker; Johnson, Jarrett L.; Bromm, VolkerThe chemical abundance patterns observed in metal-poor Galactic halo stars contain the signature of the first supernovae, and thus allow us to probe the first stars that formed in the universe. We construct a theoretical model for the early chemical enrichment history of the Milky Way, aiming in particular at the contribution from pair-instability supernovae (PISNe). These are a natural consequence of current theoretical models for primordial star formation at the highest masses. However, no metal-poor star displaying the distinct PISN signature has yet been observed. We here argue that this apparent absence of any PISN signature is due to an observational selection effect. Whereas most surveys traditionally focus on the most metal-poor stars, we predict that early PISN enrichment tends to "overshoot,'' reaching enrichment levels of [Ca/H] similar or equal to -2.5 that would be missed by current searches. We utilize existing observational data to place constraints on the primordial initial mass function (IMF). The number fraction of PISNe in the primordial stellar population is estimated to be < 0.07, or <= 40% by mass, assuming that metal-free stars have masses in excess of 10 M-circle dot. We further predict, based on theoretical estimates for the relative number of PISNe, that the expected fraction of second-generation stars below [Ca/H] = -2 with a dominant (i. e., > 90%) contribution from PISNe is merely similar to 10(-4) to 5 x 10(-4). The corresponding fraction of stars formed from gas exclusively enriched by PISNe is a factor of similar to 4 smaller. With the advent of next-generation telescopes and new, deeper surveys, we should be able to test these predictions.