Browsing by Subject "pre-main-sequence"
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Item Dynamical Masses of Young M Dwarfs: Masses and Orbital Parameters of GJ 3305 AB, the Wide Binary Companion To the Imaged Exoplanet Host 51 Eri(2015-11) Montet, Benjamin T.; Bowler, Brendan P.; Shkolnik, Evgenya L.; Deck, Katherine M.; Wang, Ji; Horch, Elliott P.; Liu, Michael C.; Hillenbrand, Lynne A.; Kraus, Adam L.; Charbonneau, David; Kraus, Adam L.We combine new high resolution imaging and spectroscopy from Keck/NIRC2, Discovery Channel Telescope/DSSI, and Keck/HIRES with published astrometry and radial velocities to measure individual masses and orbital elements of the GJ 3305 AB system, a young (similar to 20 Myr) M+M binary (unresolved spectral type M0) member of the beta Pictoris moving group comoving with the imaged exoplanet host 51 Eri. We measure a total system mass of 1.11 +/- 0.04 M-circle dot, a period of 29.03 +/- 0.50 year, a semimajor axis of 9.78 +/- 0.14 AU, and an eccentricity of 0.19 +/- 0.02. The primary component has a dynamical mass of 0.67 +/- 0.05 M-circle dot and the secondary has a mass of 0.44 +/- 0.05 M-circle dot. The recently updated BHAC15 models are consistent with the masses of both stars to within 1.5 sigma. Given the observed masses the models predict an age of the GJ 3305 AB system of 37 +/- 9 Myr. Based on the observed system architecture and our dynamical mass measurement, it is unlikely that the orbit of 51 Eri b has been significantly altered by the Kozai-Lidov mechanism.Item Fragmentation And Evolution Of Molecular Clouds. II. The Effect Of Dust Heating(2010-02) Urban, Andrea; Martel, Hugo; Evans, Neal J.; Urban, Andrea; Evans, Neal J.We investigate the effect of heating by luminosity sources in a simulation of clustered star formation. Our heating method involves a simplified continuum radiative transfer method that calculates the dust temperature. The gas temperature is set by the dust temperature. We present the results of four simulations; two simulations assume an isothermal equation of Stateand the two other simulations include dust heating. We investigate two mass regimes, i. e., 84 M(circle dot) and 671 M(circle dot), using these two different energetics algorithms. The mass functions for the isothermal simulations and simulations that include dust heating are drastically different. In the isothermal simulation, we do not form any objects with masses above 1 M(circle dot). However, the simulation with dust heating, while missing some of the low-mass objects, forms high-mass objects (similar to 20 M(circle dot)) which have a distribution similar to the Salpeter initial mass function. The envelope density profiles around the stars formed in our simulation match observed values around isolated, low-mass star-forming cores. We find the accretion rates to be highly variable and, on average, increasing with final stellar mass. By including radiative feedback from stars in a cluster-scale simulation, we have determined that it is a very important effect which drastically affects the mass function and yields important insights into the formation of massive stars.Item Fragmentation And Evolution Of Molecular Clouds. III. The Effect Of Dust And Gas Energetics(2012-09) Martel, Hugo; Urban, Andrea; Evans, Neal J.; Martel, Hugo; Evans, Neal J.Dust and gas energetics are incorporated into a cluster-scale simulation of star formation in order to study the effect of heating and cooling on the star formation process. We build on our previous work by calculating separately the dust and gas temperatures. The dust temperature is set by radiative equilibrium between heating by embedded stars and radiation from dust. The gas temperature is determined using an energy-rate balance algorithm which includes molecular cooling, dust-gas collisional energy transfer, and cosmic-ray ionization. The fragmentation proceeds roughly similarly to simulations in which the gas temperature is set to the dust temperature, but there are differences. The structure of regions around sink particles has properties similar to those of Class 0 objects, but the infall speeds and mass accretion rates are, on average, higher than those seen for regions forming only low-mass stars. The gas and dust temperature have complex distributions not well modeled by approximations that ignore the detailed thermal physics. There is no simple relationship between density and kinetic temperature. In particular, high-density regions have a large range of temperatures, determined by their location relative to heating sources. The total luminosity underestimates the star formation rate at these early stages, before ionizing sources are included, by an order of magnitude. As predicted in our previous work, a larger number of intermediate-mass objects form when improved thermal physics is included, but the resulting initial mass function (IMF) still has too few low-mass stars. However, if we consider recent evidence on core-to-star efficiencies, the match to the IMF is improved.Item Regular Frequency Patterns In The Young Delta Scuti Star HD 261711 Observed By The CoRoT And MOST Satellites(2013-04) Zwintz, K.; Fossati, L.; Guenther, D. B.; Ryabchikova, T.; Baglin, A.; Themessl, N.; Barnes, T. G.; Matthews, J. M.; Auvergne, M.; Bohlender, D.; Chaintreuil, S.; Kuschnig, R.; Moffat, A. F. J.; Rowe, J. F.; Rucinski, S. M.; Sasselov, D.; Weiss, W. W.; Barnes, T. G.Context. The internal structure of pre-main-sequence (PMS) stars is poorly constrained at present. This could change significantly through high-quality asteroseismological observations of a sample of such stars. Aims. We concentrate on an asteroseismological study of HD261711, a rather hot delta Scuti-type pulsating member of the young open cluster NGC 2264 located at the blue border of the instability region. HD261711 was discovered to be a PMS delta Scuti star using the time series photometry obtained by the MOST satellite in 2006. Methods. High-precision, time-series photometry of HD261711 was obtained by the MOST and CoRoT satellites in four separate new observing runs that are put into context with the star's fundamental atmospheric parameters obtained from spectroscopy. Frequency Analysis was performed using Period04. The spectral analysis was performed using equivalent widths and spectral synthesis. Results. With the new MOST data set from 2011/12 and the two CoRoT light curves from 2008 and 2011/12, the delta Scuti variability was confirmed and regular groups of frequencies were discovered. The two pulsation frequencies identified in the data from the first MOST observing run in 2006 are confirmed and 23 new delta Scuti-type frequencies were discovered using the CoRoT data. Weighted average frequencies for each group were determined and are related to l = 0 and l = 1 p-modes. Evidence for amplitude modulation of the frequencies in two groups is seen. The effective temperature (T-eff) was derived to be 8600 +/- 200K, log g is 4.1 +/- 0.2, and the projected rotational velocity (upsilon sin i) is 53 +/- 1 km s(-1). Using our T-eff value and the radius of 1.8 +/- 0.5 R-circle dot derived from spectral energy distribution (SED) fitting, we get a luminosity log L/L-circle dot of 1.20 +/- 0.14 which agrees well to the seismologically determined values of 1.65 R-circle dot and, hence, a log L/L-circle dot of 1.13. The radial velocity of 14 +/- 2 km s(-1) we derived for HD261711, confirms the star's membership to NGC 2264. Conclusions. Our asteroseismic models suggest that HD261711 is a delta Scuti-type star close to the zero-age main sequence (ZAMS) with a mass of 1.8 to 1.9 M-circle dot. With an age of about 10 million years derived from asteroseismology, the star is either a young ZAMS star or a late PMS star just before the onset of hydrogen-core burning. The observed splittings about the l = 0 and 1 parent modes may be an artifact of the Fourier derived spectrum of frequencies with varying amplitudes.Item Regular Frequency Patterns In The Young Delta Scuti Star HD 261711 Observed By The CoRoT And MOST Satellites(2013-04) Zwintz, K.; Fossati, L.; Guenther, D. B.; Ryabchikova, T.; Baglin, A.; Themessl, N.; Barnes, T. G.; Matthews, J. M.; Auvergne, M.; Bohlender, D.; Chaintreuil, S.; Kuschnig, R.; Moffat, A. F. J.; Rowe, J. F.; Rucinski, S. M.; Sasselov, D.; Weiss, W. W.; Barnes, T. G.Context. The internal structure of pre-main-sequence (PMS) stars is poorly constrained at present. This could change significantly through high-quality asteroseismological observations of a sample of such stars. Aims. We concentrate on an asteroseismological study of HD261711, a rather hot delta Scuti-type pulsating member of the young open cluster NGC 2264 located at the blue border of the instability region. HD261711 was discovered to be a PMS delta Scuti star using the time series photometry obtained by the MOST satellite in 2006. Methods. High-precision, time-series photometry of HD261711 was obtained by the MOST and CoRoT satellites in four separate new observing runs that are put into context with the star's fundamental atmospheric parameters obtained from spectroscopy. Frequency Analysis was performed using Period04. The spectral analysis was performed using equivalent widths and spectral synthesis. Results. With the new MOST data set from 2011/12 and the two CoRoT light curves from 2008 and 2011/12, the delta Scuti variability was confirmed and regular groups of frequencies were discovered. The two pulsation frequencies identified in the data from the first MOST observing run in 2006 are confirmed and 23 new delta Scuti-type frequencies were discovered using the CoRoT data. Weighted average frequencies for each group were determined and are related to l = 0 and l = 1 p-modes. Evidence for amplitude modulation of the frequencies in two groups is seen. The effective temperature (T-eff) was derived to be 8600 +/- 200K, log g is 4.1 +/- 0.2, and the projected rotational velocity (upsilon sin i) is 53 +/- 1 km s(-1). Using our T-eff value and the radius of 1.8 +/- 0.5 R-circle dot derived from spectral energy distribution (SED) fitting, we get a luminosity log L/L-circle dot of 1.20 +/- 0.14 which agrees well to the seismologically determined values of 1.65 R-circle dot and, hence, a log L/L-circle dot of 1.13. The radial velocity of 14 +/- 2 km s(-1) we derived for HD261711, confirms the star's membership to NGC 2264. Conclusions. Our asteroseismic models suggest that HD261711 is a delta Scuti-type star close to the zero-age main sequence (ZAMS) with a mass of 1.8 to 1.9 M-circle dot. With an age of about 10 million years derived from asteroseismology, the star is either a young ZAMS star or a late PMS star just before the onset of hydrogen-core burning. The observed splittings about the l = 0 and 1 parent modes may be an artifact of the Fourier derived spectrum of frequencies with varying amplitudes.Item Regular Frequency Patterns In The Young Delta Scuti Star HD 261711 Observed By The CoRoT And MOST Satellites(2013-04) Zwintz, K.; Fossati, L.; Guenther, D. B.; Ryabchikova, T.; Baglin, A.; Themessl, N.; Barnes, T. G.; Matthews, J. M.; Auvergne, M.; Bohlender, D.; Chaintreuil, S.; Kuschnig, R.; Moffat, A. F. J.; Rowe, J. F.; Rucinski, S. M.; Sasselov, D.; Weiss, W. W.; Barnes, T. G.Context. The internal structure of pre-main-sequence (PMS) stars is poorly constrained at present. This could change significantly through high-quality asteroseismological observations of a sample of such stars. Aims. We concentrate on an asteroseismological study of HD261711, a rather hot delta Scuti-type pulsating member of the young open cluster NGC 2264 located at the blue border of the instability region. HD261711 was discovered to be a PMS delta Scuti star using the time series photometry obtained by the MOST satellite in 2006. Methods. High-precision, time-series photometry of HD261711 was obtained by the MOST and CoRoT satellites in four separate new observing runs that are put into context with the star's fundamental atmospheric parameters obtained from spectroscopy. Frequency Analysis was performed using Period04. The spectral analysis was performed using equivalent widths and spectral synthesis. Results. With the new MOST data set from 2011/12 and the two CoRoT light curves from 2008 and 2011/12, the delta Scuti variability was confirmed and regular groups of frequencies were discovered. The two pulsation frequencies identified in the data from the first MOST observing run in 2006 are confirmed and 23 new delta Scuti-type frequencies were discovered using the CoRoT data. Weighted average frequencies for each group were determined and are related to l = 0 and l = 1 p-modes. Evidence for amplitude modulation of the frequencies in two groups is seen. The effective temperature (T-eff) was derived to be 8600 +/- 200K, log g is 4.1 +/- 0.2, and the projected rotational velocity (upsilon sin i) is 53 +/- 1 km s(-1). Using our T-eff value and the radius of 1.8 +/- 0.5 R-circle dot derived from spectral energy distribution (SED) fitting, we get a luminosity log L/L-circle dot of 1.20 +/- 0.14 which agrees well to the seismologically determined values of 1.65 R-circle dot and, hence, a log L/L-circle dot of 1.13. The radial velocity of 14 +/- 2 km s(-1) we derived for HD261711, confirms the star's membership to NGC 2264. Conclusions. Our asteroseismic models suggest that HD261711 is a delta Scuti-type star close to the zero-age main sequence (ZAMS) with a mass of 1.8 to 1.9 M-circle dot. With an age of about 10 million years derived from asteroseismology, the star is either a young ZAMS star or a late PMS star just before the onset of hydrogen-core burning. The observed splittings about the l = 0 and 1 parent modes may be an artifact of the Fourier derived spectrum of frequencies with varying amplitudes.Item Testing The Disk Regulation Paradigm With Spitzer Observations. II. A Clear Signature Of Star-Disk Interaction In NGC 2264 And The Orion Nebula Cluster(2007-12) Cieza, Lucas; Baliber, Nairn; Cieza, LucasObservations of pre-main-sequence star rotation periods reveal slow rotators in young clusters of various ages, indicating that angular momentum is somehow removed from these rotating masses. The mechanism by which spin-up is regulated as young stars contract has been one of the longest standing problems in star formation. Attempts to observationally confirm the prevailing theory that magnetic interaction between the star and its circumstellar disk regulates these rotation periods have produced mixed results. In this paper, we use the unprecedented disk identification capability of the Spitzer Space Telescope to test the star-disk interaction paradigm in two young clusters, NGC 2264 and the Orion Nebula Cluster (ONC). We show that once mass effects and sensitivity biases are removed, a clear increase in the disk fraction with period can be observed in both clusters across the entire period range populated by cluster members. We also show that the long-period peak (P similar to 8 days) of the bimodal distribution observed for high-mass stars in the ONC is dominated by a population of stars possessing a disk, while the short-period peak (P similar to 2 days) is dominated by a population of stars without a disk. Our results represent the strongest evidence to date that star-disk interaction regulates the angular momentum of these young stars. This study will make possible quantitative comparisons between the observed period distributions of stars with and without a disk and numerical models of the angular momentum evolution of young stars.