Browsing by Subject "planets and satellites: gaseous"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item The Lick-Carnegie Exoplanet Survey: Gliese 687 B-A Neptune-Mass Planet Orbiting A Nearby Red Dwarf(2014-07) Burt, Jennifer; Vogt, Steven S.; Butler, R. Paul; Hanson, Russell; Meschiari, Stefano; Rivera, Eugenio J.; Henry, Gregory W.; Laughlin, Gregory; Meschiari, StefanoPrecision radial velocities from the Automated Planet Finder (APF) and Keck/HIRES reveal an M sin(i) = 18 +/- 2M(circle plus) planet orbiting the nearby M3V star GJ 687. This planet has an orbital period P = 38.14 days and a low orbital eccentricity. Our Stromgren b and y photometry of the host star suggests a stellar rotation signature with a period of P = 60 days. The star is somewhat chromospherically active, with a spot filling factor estimated to be several percent. The rotationally induced 60 day signal, however, is well separated from the period of the radial velocity variations, instilling confidence in the interpretation of a Keplerian origin for the observed velocity variations. Although GJ 687 b produces relatively little specific interest in connection with its individual properties, a compelling case can be argued that it is worthy of remark as an eminently typical, yet at a distance of 4.52 pc, a very nearby representative of the galactic planetary census. The detection of GJ 687 b indicates that the APF telescope is well suited to the discovery of low-mass planets orbiting low-mass stars in the as yet relatively un-surveyed region of the sky near the north celestial pole.Item M Dwarf Metallicities And Giant Planet Occurrence: Ironing Out Uncertainties And Systematics(2014-08) Gaidos, Eric; Mann, Andrew W.; Mann, Andrew W.Comparisons between the planet populations around solar-type stars and those orbiting M dwarfs shed light on the possible dependence of planet formation and evolution on stellar mass. However, such analyses must control for other factors, i.e., metallicity, a stellar parameter that strongly influences the occurrence of gas giant planets. We obtained infrared spectra of 121 M dwarfs stars monitored by the California Planet Search and determined metallicities with an accuracy of 0.08 dex. The mean and standard deviation of the sample are -0.05 and 0.20 dex, respectively. We parameterized the metallicity dependence of the occurrence of giant planets on orbits with a period less than two years around solar-type stars and applied this to our M dwarf sample to estimate the expected number of giant planets. The number of detected planets (3) is lower than the predicted number (6.4), but the difference is not very significant (12% probability of finding as many or fewer planets). The three M dwarf planet hosts are not especially metal rich and the most likely value of the power-law index relating planet occurrence to metallicity is 1.06 dex per dex for M dwarfs compared to 1.80 for solar-type stars; this difference, however, is comparable to uncertainties. Giant planet occurrence around both types of stars allows, but does not necessarily require, a mass dependence of similar to 1 dex per dex. The actual planet-mass-metallicity relation may be complex, and elucidating it will require larger surveys like those to be conducted by ground-based infrared spectrographs and the Gaia space astrometry mission.