Browsing by Subject "phenotype"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Compensatory Evolution for a Gene Deletion is Not Limited to its Immediate Functional Network(2009-05) Harcombe, W. R.; Springman, R.; Bull, J. J.; Harcombe, W. R.; Springman, R.; Bull, J. J.Genetic disruption of an important phenotype should favor compensatory mutations that restore the phenotype. If the genetic basis of the phenotype is modular, with a network of interacting genes whose functions are specific to that phenotype, compensatory mutations are expected among the genes of the affected network. This perspective was tested in the bacteriophage T3 using a genome deleted of its DNA ligase gene, disrupting DNA metabolism. Results: In two replicate, long-term adaptations, phage compensatory evolution accommodated the low ligase level provided by the host without reinventing its own ligase. In both lines, fitness increased substantially but remained well below that of the intact genome. Each line accumulated over a dozen compensating mutations during long-term adaptation, and as expected, many of the compensatory changes were within the DNA metabolism network. However, several compensatory changes were outside the network and defy any role in DNA metabolism or biochemical connection to the disruption. In one line, these extra-network changes were essential to the recovery. The genes experiencing compensatory changes were moderately conserved between T3 and its relative T7 (25% diverged), but the involvement of extra-network changes was greater in T3. Conclusion: Compensatory evolution was only partly limited to the known functionally interacting partners of the deleted gene. Thus gene interactions contributing to fitness were more extensive than suggested by the functional properties currently ascribed to the genes. Compensatory evolution offers an easy method of discovering genome interactions among specific elements that does not rest on an a priori knowledge of those elements or their interactions.Item A DNA Element Regulates Drug Tolerance and Withdrawal in Drosophila(PLOS One, 2013-09-23) Li, Xiaolei; Ghezzi, Alfredo; Pohl, Jascha B.; Bohm, Arun Y.; Atkinson, Nigel S.Drug tolerance and withdrawal are insidious responses to drugs of abuse; the first increases drug consumption while the second punishes abstention. Drosophila generate functional tolerance to benzyl alcohol sedation by increasing neural expression of the slo BK-type Ca2+ activated K+ channel gene. After drug clearance this change produces a withdrawal phenotype—increased seizure susceptibility. The drug-induced histone modification profile identified the 6b element (60 nt) as a drug responsive element. Genomic deletion of 6b produces the allele, sloΔ6b, that reacts more strongly to the drug with increased induction, a massive increase in the duration of tolerance, and an increase in the withdrawal phenotype yet does not alter other slo-dependent behaviors. The 6b element is a homeostatic regulator of BK channel gene expression and is the first cis-acting DNA element shown to specifically affect the duration of a drug action.Item Letter to Robert M. Carter from H.B. Stenzel on 1969-02-19(1969-02-19) Stenzel, Henryk B.